

FlowCal

FlowCal is a library for reading, analyzing, and calibrating flow cytometry data in Python.
It features:

	Extraction of Flow Cytometry Standard (FCS) files into numpy array-like structures

	Traditional and non-standard gating, including automatic density-based two-dimensional gating.

	Transformation functions that allow conversion of data from raw FCS channel numbers to arbitrary fluorescence units (a.u.).

	Plotting, including generation of histograms, density plots and scatter plots.

Most importantly, FlowCal automatically processes calibration beads data in order to convert fluorescence to calibrated units, Molecules of Equivalent Fluorophore (MEF). The most important advantages of using MEF are 1) fluorescence can be reported independently of acquisition settings, and 2) variation in data due to instrument shift is eliminated.

Finally, FlowCal includes a user-fiendly Excel User Interface to perform all of these operations automatically, without the need to write any code.

Cite FlowCal

If you use FlowCal in your research, we would appreciate citations to the following article:

Castillo-Hair S.M., Sexton J.T., et al. FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units. [http://pubs.acs.org/doi/abs/10.1021/acssynbio.5b00284]. ACS Synth. Biol. 2016.

Table of Contents

	Getting Started
	Download FlowCal! [https://github.com/taborlab/FlowCal/archive/master.zip]

	Installing FlowCal with Anaconda

	Installing FlowCal in an Existing Python Evironment

	Fundamentals
	Calibration

	Density Gating

	FlowCal’s Excel UI
	How to use FlowCal’s Excel UI

	Format of the Input Excel File

	Analysis Performed by the Excel UI

	Outputs of the Excel UI

	Command Line Interface (Advanced)

	FlowCal’s Python API Tutorial
	Reading Flow Cytometry Data

	Transforming Flow Cytometry Data

	Plotting Flow Cytometry Data

	Gating Flow Cytometry Data

	Calibrating Flow Cytometry Data to MEF

	Processing FCS Files with the Excel UI

	FlowCal (Python API) Reference
	FlowCal.excel_ui module

	FlowCal.gate module

	FlowCal.io module

	FlowCal.mef module

	FlowCal.plot module

	FlowCal.stats module

	FlowCal.transform module

	Contribute
	How to Contribute

	Report Bugs

	Request Features

	FlowCal on Github [https://www.github.com/taborlab/FlowCal]

Getting Started

FlowCal requires the Python programming language. We recommend most Windows and macOS users to install FlowCal with Anaconda, a Python distribution that already includes many necessary Python packages. macOS already includes its own version of Python, but it does not include some Python tools that FlowCal requires. Therefore, Anaconda is recommended.

Users who have an existing python installation and are comfortable with command-line interfaces can install FlowCal in their existing environment.

	Download FlowCal! [https://github.com/taborlab/FlowCal/archive/master.zip]

	Installing FlowCal with Anaconda

	Installing FlowCal in an Existing Python Evironment

Installing FlowCal with Anaconda

To install Anaconda and FlowCal, do the following:

	Navigate to this [https://www.anaconda.com/products/individual] page and scroll down to the “Anaconda Installers” section. Click on the “Graphical Installer” link below the name of your operating system (Windows, MacOS, or Linux). This will download the installer.

Note

Windows: If your computer is a 32-bit PC, click on the message “32-Bit Graphical Installer” instead of the “Download” button. If you don’t know whether yours is a 32 or 64-bit computer but you have purchased it in the last five years, it is probably a 64-bit computer and you can ignore this message.

Note

Python 2.7 is also supported. However, we recommend downloading the Python 3.8 version of Anaconda.

	Double click the installer (.exe in Windows, .pkg in OS X) and follow the instructions on screen.

Note

Windows: During installation, on the “Advanced Installation Options” screen, make sure to check both “Add Anaconda to my PATH environment variable” and “Register Anaconda as my default Python”. Recent versions of Anaconda suggest to keep the first option unchecked. However, this option is necessary for the installation script on step 4 to work.

	Download FlowCal from here [https://github.com/taborlab/FlowCal/archive/master.zip]. A file called FlowCal-master.zip will be downloaded. Unzip this file.

	Inside the unzipped folder, double click on Install FlowCal (Windows).bat or Install FlowCal (macOS) if you are using Windows or OS X, respectively. This will open a terminal window and install FlowCal. The installation procedure may take a few minutes. When installation is finished, the terminal will show the message “Press Enter to finish…”. If the installation was successful, your terminal should look like the figure below. Press Enter to close the terminal window.

[image: ../_images/installation_completed.png]

Note

Windows: If the following message appears after double clicking Install FlowCal (Windows): “Windows protected your PC – Windows SmartScreen prevented an unrecognized app from starting…”, click on the “More info” link under the text, and then click on the “Run anyway” button. This will remove the security restriction from the program and allow it to run properly.

Note

Mac OS X: If the following error message appears after double clicking Install FlowCal (macOS): “’Install FlowCal (macOS)’ can’t be opened because it is from an unidentified developer.”, navigate to System Preferences -> Security and Privacy -> General, and click the “Open Anyways” button adjacent to the message stating “’Install FlowCal (macOS)’ was blocked from opening because it is not from an identified developer”. This will remove the security restriction from the program and allow it to run properly.

To see FlowCal in action, head to the Excel UI section. The FlowCal zip file includes an examples folder with files that you can use while following the instructions.

Installing FlowCal in an Existing Python Evironment

Python (2.7, 3.6, 3.7, or 3.8) is required, along with pip and setuptools. The easiest way is to install FlowCal is to use pip:

pip install FlowCal

This should take care of all the requirements automatically. Linux and macOS users may need to request administrative permissions by preceding this command with sudo.

Alternatively, download FlowCal from here [https://github.com/taborlab/FlowCal/archive/master.zip]. Next, make sure that the following Python packages are present:

	packaging (>=16.8)

	six (>=1.10.0)

	numpy (>=1.9.0)

	scipy (>=0.19.0)

	matplotlib (>=2.0.0)

	scikit-image (>=0.10.0)

	scikit-learn (>=0.16.0)

	pandas (>=0.23.0)

	xlrd (>=0.9.2,<2.0.0)

	openpyxl (>=2.2.0)

If you have pip, a requirements.txt file is provided, such that the required packages can be installed by running:

pip install -r requirements.txt

To install FlowCal, run the following in FlowCal’s root directory:

python setup.py install

Again, some users may need to precede the previous commands with sudo.

Note

Ubuntu/Linux Mint: FlowCal might need more recent versions of some python packages than the ones provided via apt. To upgrade these, some non-python packages need to be installed in your system. On freshly installed systems, the following packages may need to be manually installed:

	gcc

	g++

	gfortran

	libblas-dev

	liblapack-dev

	libfreetype6-dev

	python-dev

	python-tk

	python-pip

All of these can be installed using:

sudo apt install <package-name>

Next, pip should be upgraded by using:

sudo pip install --upgrade pip

After this, you may install FlowCal by following the steps above.

Fundamentals

Here we explain the fundamentals of two of the main features of FlowCal: conversion of fluorescence to calibrated units, and automatic gating of flow cytometry data based on density.

	Calibration

	Density Gating

Calibration

Introduction to Calibration and MEF

Fluorescence data obtained via flow cytometry is frequently reported in arbitrary units (a.u.), which have the following issues:

	Fluorescence values in a.u depend on the instrument used.

	Even when using the same instrument, fluorescence values in a.u. depend on the acquisition settings used.

	Even when these two are kept constant, fluorescence values in a.u. can change in time due to instrument drift.

Because of this, the only meaningful results based on flow cytometry that are frequently presented are ratios of measured reporter in two different conditions (i.e. fold-change). However, absolute levels of reporter cannot be quantitatively compared across laboratories, or between different different biological systems that require different acquisition settings, and not even between different samples of the same system taken by the same person across large periods of time.

To compensate for some of these effects, manufacturers provide calibration particles. These are a mixture of 4-8 subpopulations of microbeads, each one containing different amounts of a certain fluorophore. The fluorescence of each subpopulation is specified by the manufacturer in Molecules of Equivalent Fluorophore (MEF), the number of fluorophores in solution that result in the same fluorescence as one microbead. Calibration particles can then be measured in every experiment to obtain the fluorescence of each subpopulation in a.u. Using these fluorescence values and the MEF values provided by the manufacturer, one can construct a standard curve that maps fluorescence from a.u. to MEF. This standard curve can then be used to convert the fluorescence of cell samples to MEF.

Expressing fluorescence of cellular samples in MEF automatically eliminates issues 2 and 3. Issue 1 is also eliminated if the calibration beads’ fluorophore is the same as the one used in cellular samples. If not, instrument-dependence can still be eliminated by performing a one-time calibration using a common cellular sample. At the very least, transforming to MEF makes cellular samples inside a laboratory comparable.

The Process of MEF Calibration

We will now give a short description of the process that FlowCal uses to calibrate fluorescence data to MEF, and show some of the plots produced in the process. A discussion on the exact figures generated by the Excel UI and how to use these to debug common problems can be found here. A more technical discussion of the MEF calibration procedure from the perspective of FlowCal.mef.get_transform_fxn(), the function that does most of the calibration work, can be found here.

To perform MEF calibration, the following steps are typically followed:

1. Measurement of Calibration Beads

Calibration beads must be measured in every experiment, using the same acquisition settings as when measuring cell samples. The figure below shows typical flow cytometry data from calibration beads.

[image: ../_images/fundamentals_calibration_1.png]
The top subfigure shows data from the forward/side scatter channels, whereas the bottom one shows one of the fluorescence channels. Note how several populations with different fluorescence values are evident in the bottom plot.

2. Elimination of Bead Aggregates and Other Debris

Notice, in the figure above, that two different populations are present in the forward/side scatter plot. The faint population on the right/upper portion of the plot corresponds to bead aggregates. These are obviously undesired, as we are only interested in single bead fluorescence. This sort of situation is normally dealt with by “gating”, which involves manually drawing a region of interest and retaining the events that fall inside. FlowCal performs density gating, an automated procedure to eliminate aggregates and other events that are clearly different from the main population of interest. The figure below shows a black contour surrounding the region identified by density gating in the forward/side scatter plot, showing that density gating can distinguish single beads from aggregates. Notice also how small peaks in the fluorescence plot disappear after density-gating, which is consistent with the eliminated population being composed of agglomerations of multiple beads.

[image: ../_images/fundamentals_calibration_2.png]

3. Identification of Bead Subpopulations

In order to calculate the average fluorescence of each subpopulation, the individual events corresponding to each must first be identified. The figure below shows one of the plots produced by FlowCal after an automated clustering algorithm has properly identified each subpopulation. Note how this can be achieved using information from several fluorescence channels at the same time.

[image: ../_images/fundamentals_calibration_3.png]
Next, the average fluorescence of each subpopulation is calculated. Some subpopulations, however, can have fluorescence values that are outside the limit of detection of the instrument, and therefore their events will show saturated fluorescence values. These subpopulations should not be considered further in the analysis. FlowCal discards these automatically.

The figure below shows the individual subpopulations with a vertical line representing their median fluorescence. In addition, subpopulations that were automatically discarded are shown colored in gray.

[image: ../_images/fundamentals_calibration_4.png]

4. Calculation of a Standard Curve

Having the fluorescence of the individual populations, as measured by the flow cytometer, and the MEF values provided by the manufacturer, a standard curve can be calculated to transform fluorescence of any event to MEF. The figure below shows an example of such a standard curve. FlowCal uses the concept of a “bead fluorescence model”, which is directly fitted to bead data but not immediately applicable to cells. However, some small mathematical manipulations turn this bead fluorescence model into a standard curve that is readily applicable to cells.

[image: ../_images/fundamentals_calibration_5.png]

5. Conversion of Cell Fluorescence to MEF

Finally, the fluorescence of any cell sample can be turned into MEF by using the standard curve obtained above.

Density Gating

Description

Density gating looks at two channels of flow cytometry data, and discards events that are clearly different from the main population in the sample. Density gating is applied mostly to the forward/side scatter channels in FlowCal. When doing this, single microbeads or cells can be separated from aggregates and non-bead or non-biological debris, even when these events are a substantial fraction of the total count.

In the figure below, a sample was acquired with an intentionally low side-scatter threshold to allow a significant number of events corresponding to non-biological debris. Density gating was then applied to retain 50% of the events in the densest region. Because cells have a more uniform size than the observed debris, density gating retains mostly cells, which is reflected in the fact that FL1 fluorescence is bimodal before gating, but not after.

[image: ../_images/fundamentals_density_1.png]

Note

The sample shown above was intentionally acquired with a low threshold value in SSC to show the capabilities of density gating. Normally, a lot of the debris can be eliminated by simply selecting a higher SSC threshold. However, density gating is still an excellent method to clean the data and eliminate all the debris that a simple threshold cannot filter. In our experience, this can still be a significant fraction of the total event count, especially if the cell culture has low density.

Algorithm

Density gating is implemented in the function FlowCal.gate.density2d(). In short, this function:

	Determines the number of events to keep, based on the user specified gating fraction and the total number of events of the input sample.

	Divides the 2D channel space into a rectangular grid, and counts the number of events falling within each bin of the grid. The number of counts per bin across all bins comprises a 2D histogram, which is a coarse approximation of the underlying probability density function.

	Smoothes the histogram generated in Step 2 by applying a Gaussian Blur. Theoretically, the proper amount of smoothing results in a better estimate of the probability density function. Practically, smoothing eliminates isolated bins with high counts, most likely corresponding to noise, and smoothes the contour of the gated region.

	Selects the bins with the greatest number of events in the smoothed histogram, starting with the highest and proceeding downward until the desired number of events to keep, calculated in step 1, is achieved.

	Returns the gated event list.

FlowCal’s Excel UI

FlowCal’s Excel UI allows for easy processing of flow cytometry data from a set of FCS files without having to write any code. The user simply writes an Excel file listing the samples to be analyzed, along with some options. FlowCal then processes those samples and produces plots and statistics, which can then be used in subsequent analyses. Calibration beads data can be included to report results in calibrated MEF units.

	How to use FlowCal’s Excel UI

	Format of the Input Excel File

	Analysis Performed by the Excel UI

	Outputs of the Excel UI

	Command Line Interface (Advanced)

How to use FlowCal’s Excel UI

To use the FlowCal’s Excel UI, follow these steps:

	Make and save an Excel file indicating the FCS files to process. Click here for information on how to make a properly formatted input Excel file.

	Launch FlowCal’s Excel UI by double clicking on Run FlowCal (Windows).bat or Run FlowCal (macOS).

	A window will appear requesting an input Excel file. Locate the Excel file made in step 1 and click on “Open”.

	FlowCal will start processing the indicated calibration beads and cell samples. A terminal window will appear indicating the progress of the analysis.

	When the analysis finishes, the message “Press Enter to finish…” will appear. Press Enter and close the terminal window. A set of plots and an Excel file with statistics will appear in the same directory in which the input Excel file was located.

Format of the Input Excel File

FlowCal’s Excel interface requires a properly formatted Excel file that depicts the samples to be analyzed and the data processing parameters. The Excel input file must have at least three sheets, named Instruments, Beads, and Samples. Other sheets may be present, but FlowCal will ignore them.

Warning

Sheet and column names are case-sensitive.

An example of a properly formatted Excel input file is provided in the examples folder of FlowCal. The following sections describe the format of the input Excel file, while using the example file as a guide.

Instruments sheet

This sheet must be filled with basic information about the flow cytometer used to acquire the samples. Each row represents an instrument. Typically, the user would only need to specify one instrument. However, FlowCal allows the simultaneous processing of samples taken with different instruments. The figure below shows an example of an Instruments sheet.

[image: ../_images/input_instruments.png]
For each row, the following columns must be filled.

	ID (column A in the figure above) used to reference the instrument from the other sheets. Each row must have a unique ID.

	Forward Scatter Channel (C) and Side Scatter Channel (D): the names of these channels exactly as they appear in the acquisition software.

	Fluorescence channels (E): The names of the relevant fluorescence channels as a comma-separated list, exactly as they appear in the acquisition software.

	Time Channel (F): The name of the channel registering the time of each event. The FCS standard dictates that this should be called “Time”, but some non-standard files may use a different name. This can be found in the acquisition software.

Additional columns, like Description (B in the figure above), can be added in any place for the user’s records, and will be copied unmodified to the output Excel file by FlowCal.

Beads sheet

This sheet contains details about calibration microbeads and how to process them. Each row represents a different sample of beads. The figure below shows an example of an Beads sheet.

[image: ../_images/input_beads.png]
For each row, the following columns must be filled:

	ID (column A in the figure above): used to reference the beads sample from the Samples sheet, and to name the figures produced by FlowCal. Each row must have a unique ID.

	Instrument ID (B): The ID of the instrument used to take the sample.

	File Path (C): the name of the corresponding FCS file.

	<Channel name> MEF Values (E): MEF values provided by the manufacturer, for each channel in which a standard curve must be calculated. If MEF values are provided for a channel, the corresponding instrument should include this channel name in the Fluorescence Channels field. More <Channel name> MEF Values columns can be added if needed, or removed if not used.

	Gate Fraction (F): a gate fraction parameter used for density gating.

	Clustering Channels (G): the fluorescence channels used for clustering, as a comma separated list.

Additional columns, like Beads Lot (column D), can be added in any place for the user’s records, and will be copied unmodified to the output Excel file by FlowCal.

Samples sheet

In this sheet, the user specifies cell samples and tells FlowCal how to process them. Each row contains the information used in the analysis of one FCS file. One file can be analyzed several times with different options (e.g. gating fractions or fluorescence units) by adding more rows that reference the same file. The figure below shows an example of a Samples sheet.

[image: ../_images/input_samples.png]
For each row, the following columns must be filled:

	ID (column A in the figure above): used to reference the sample while generating figures, and in the output Excel file. Each row must have a unique ID.

	Instrument ID (B): The ID of the instrument used to take the sample.

	Beads ID (C): The ID of the beads sample that will be used to perform the MEF transformation. Can be left blank if MEF units are not desired.

	File Path (D): the name of the corresponding FCS file.

	<Channel name> Units (E): The units in which to report statistics and make plots, for each fluorescence channel. If left blank, no statistics or plots will be made for that channel. More of these columns can be added or removed if necessary. If this field is specified for a channel, the corresponding instrument should include this channel in its Fluorescence Channels field. The available options are:

	Channel: Raw “Channel Number” units, exactly as they are stored in the FCS file.

	RFI or a.u.: Relative Fluorescence Intensity units, also known as Arbitrary Units.

	MEF: MEF units.

	Gate Fraction (F): Fraction of samples to keep when performing density gating.

Additional columns, such as Strain, Plasmid, and DAPG (uM) (columns G, H, and I), can be added in any place for the user’s records, and will be copied unmodified to the output Excel file by FlowCal.

Warning

If MEF units are requested for a fluorescence channel of a sample, an FCS file with calibration beads data should be specified in the Beads ID column. Both beads and samples should have been acquired at the same settings for the specified fluorescence channel, otherwise FlowCal will throw an error.

Analysis Performed by the Excel UI

The analysis that FlowCal’s Excel UI performs is divided roughly in two phases: processing of calibration beads and processing of samples. We will now describe the steps involved in each.

Processing of Calibration Beads

The following steps are performed for each calibration beads sample specified in the Beads sheet of the input Excel file:

	Density gating is applied in the forward/side scatter channels. This is an automated procedure that eliminates microbead aggregates and debris.

	The individual microbead subpopulations are identified using automated clustering.

	For each subpopulation, the median fluorescence is calculated.

	Microbead subpopulations are discarded if they are found to be close to the saturation limits of the detector. Only populations that are not saturating are retained.

	Using the fluorescence values of the retained populations in channel units and the corresponding MEF values provided by the user, a standard curve is generated. This standard curve is used to transform cell fluorescence from raw units to MEF.

Plots are generated for each one of these steps, and some intermediate results are saved to the output Excel file.

For an introductory discussion of flow cytometry calibration, go to the fundamentals of calibration section.

Processing of Cell Samples

The following steps are performed for each cell sample specified in the Samples sheet of the input Excel file:

	Density gating is applied in the forward/side scatter channels.

	Fluorescence data for each specified fluorescence channel is transformed to the units specified in the Units column of the input Excel file.

	Statistics of the specified fluorescence channels are calculated, including mean, standard deviation, and others. A histogram of each fluorescence channel is also generated.

Statistics and histograms are saved to the output Excel file.

Outputs of the Excel UI

During processing of the calibration beads and cell samples, FlowCal creates two folders with images and an output Excel file in the same location as the input Excel file. Here we describe these. In what follows, <ID> refers to the value specified in the ID column of the input Excel file.

Plots

	The folder plot_beads contains plots of the individual steps of processing of the calibration particle samples:

	density_hist_<ID>.png: A forward/side scatter 2D density diagram of the calibration particle sample, and a histogram for each relevant fluorescence channel.

[image: ../_images/output_beads_density.png]

	clustering_<ID>.png: A plot of the sub-populations identified during the clustering step, where the different sub-populations are shown in different colors. Depending on the number of channels used for clustering, this plot is a histogram (when using only one channel), a 2D scatter plot (when using two channels), or a 3D scatter plot with three 2D projections (when using three channels or more).

[image: ../_images/output_beads_clustering.png]

Note

It is normally easy to distinguish the different bead populations in this plot, and the different colors should correspond to this expectation. If the populations have been identified incorrectly, changing the number of channels used for clustering or the density gate fraction can improve the results. These two parameters can be changed in the Beads sheet of the input Excel file.

	populations_<channel>_<ID>.png: A histogram showing the identified microbead sub-populations in different colors, for each fluorescence channel in which a MEF standard curve is to be calculated. In addition, a vertical line is shown representing the median of each population, which is later used to calculate the standard curve. Sub-populations that were not used to generate the standard curve are shown in gray.

[image: ../_images/output_beads_populations.png]

Note

All populations should be unimodal. Bimodal populations indicate incorrect clustering. This can be fixed by changing the number of channels used for clustering or the density gate fraction in the Beads sheet of the input Excel file.

	std_crv_<channel>_<ID>.png: A plot of the fitted standard curve, for each channel in which MEF values were specified.

[image: ../_images/output_beads_sc.png]

Note

All the blue dots should line almost perfectly on the green line, otherwise the estimation of the standard curve might not be good. If this is not the case, you should make sure that clustering is being performed correctly by looking at the previous plots. If one dot differs significantly from the curve despite perfect clustering, you might want to manually remove it. This can be done by replacing its MEF value with the word “None” in the Beads sheet of the input Excel file.

	The folder plot_samples contains plots of the experimental cell samples. Each experimental sample of name “ID” as specified in the Excel input sheet results in a file named <ID>.png. This image contains a forward/side scatter 2D density diagram with the gated region indicated, and a histogram for each user-specified fluorescence channel.

[image: ../_images/output_sample.png]

Output Excel File

The file <Name of the input Excel file>_output.xlsx contains calculated statistics for beads and samples. To produce this file, FlowCal copies the Instruments, Beads, and Samples sheets from the input Excel file, unmodified, to the output file, and adds columns to the Beads and Samples sheet with statistics.

In both sheets, the number of events after gating and the acquisition time are reported for each sample. In addition, a column named Analysis Notes indicates the user about any errors that occurred during processing.

Statistics per beads file, per fluorescence channel include: the channel gain, the amplifier type, the equation of the beads fluorescence model used, and the values of the fitted parameters.

[image: ../_images/output_spreadsheet_beads.png]
Statistics per cell sample, per fluorescence channel include: channel gain, mean, geometric mean, median, mode, arithmetic and geometric standard deviation, arithmetic and geometric coefficient of variation (CV), interquartile range (IQR), and robust coefficient of variation (RCV). Note that if an error has been found, the Analysis Notes field will be populated, and statistics and plots will not be reported.

[image: ../_images/output_spreadsheet_samples.png]
In addition, a Histograms tab is generated, with bin/counts pairs for each sample and relevant fluorescence channel in the specified units.

[image: ../_images/output_spreadsheet_histograms.png]
One last tab named About Analysis is added with information about the corresponding input Excel file, the date and time of the run, and the FlowCal version used.

[image: ../_images/output_spreadsheet_about.png]

Command Line Interface (Advanced)

The Excel UI can be run from a command line interpreter with one of the following equivalent statements:

flowcal [-h] [-i [INPUTPATH]] [-o [OUTPUTPATH]] [-v] [-p] [-H]
python -m FlowCal.excel_ui [-h] [-i [INPUTPATH]] [-o [OUTPUTPATH]] [-v] [-p] [-H]

Where the flags are:

-h, --help show this help message and exit
-i [INPUTPATH], --inputpath [INPUTPATH]
 input Excel file name. If not specified, show open
 file window
-o [OUTPUTPATH], --outputpath [OUTPUTPATH]
 output Excel file name. If not specified, use
 [INPUTPATH]_output
-v, --verbose print information about individual processing steps
-p, --plot generate and save density plots/histograms of beads
 and samples
-H, --histogram-sheet
 generate sheet in output Excel file specifying
 histogram bins

Running FlowCal’s Excel UI without any flags will show the open file dialog to select an input Excel file. Once a file is selected, FlowCal will generate an output Excel file. In contrast to using Run FlowCal (macOS) or Run FlowCal (Windows).bat, the statement above with no flags will not display any messages during processing or generate any plots. To display messages and generate plots, use:

flowcal -v -p

Run FlowCal (macOS) and Run FlowCal (Windows).bat use, in fact, the following equivalent statement:

python -m FlowCal.excel_ui -v -p

Note

In macOS, a critical error may appear when trying to run the Excel UI from the command line. The error message is quite long, but one of the last lines reads similarly to this:

libc++abi.dylib: terminating with uncaught exception of type NSException

This is due to the macosx matplotlib backend conflicting with the TkInter library used to show the open file window. To solve this, you need to change matplotlib’s backend to TkAgg. A few ways to do so can be found here [http://matplotlib.org/faq/usage_faq.html#what-is-a-backend].

We recommend changing the matplotlib’s backend temporarily by setting the MPLBACKEND environment variable. If you follow this method, you should run the following before calling FlowCal:

export MPLBACKEND="TkAgg"

This is actually the solution implemented in Run FlowCal (macOS).

Using the command line arguments, one can create a batch script to process several Excel files at once, each pointing to a different set of FCS files. Such script would have the form:

flowcal -i input_excel_file_1.xlsx -o output_excel_file_1.xlsx
flowcal -i input_excel_file_2.xlsx -o output_excel_file_2.xlsx
flowcal -i input_excel_file_3.xlsx -o output_excel_file_3.xlsx
...

FlowCal’s Python API Tutorial

FlowCal is, at its core, a Python library that a programmer can use to analyze flow cytometry data in a more flexible way than with the Excel UI. This section gives an overview of the abilities of FlowCal from a programmer’s perspective. The tutorials below are listed below in order of increasing complexity. We recommend the reader to go through them in order.

Note

The FlowCal Python API tutorial assumes that the reader is familiar with Python, numpy and matplotlib. It also assumes that the reader has Python 3.8 installed, as well as FlowCal and all its dependencies. For more information on installation, refer to the Getting started section.

	Reading Flow Cytometry Data

	Transforming Flow Cytometry Data

	Plotting Flow Cytometry Data

	Gating Flow Cytometry Data

	Calibrating Flow Cytometry Data to MEF

	Processing FCS Files with the Excel UI

Reading Flow Cytometry Data

This tutorial focuses on how to open FCS files and manipulate the data therein using FlowCal.

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then, import FlowCal as with any other python module.

>>> import FlowCal

FCS files are standard files in which flow cytometry data is stored. Normally, one FCS file corresponds to one sample.

The object FlowCal.io.FCSData allows a user to open an FCS file. The following instruction opens the file sample006.fcs from the FCFiles folder, loads the information into an FCSData object, and assigns it to a variable s.

>>> s = FlowCal.io.FCSData('FCFiles/sample006.fcs')

An FCSData object is a 2D numpy array with a few additional features. The first dimension indexes the event number, and the second dimension indexes the flow cytometry channel (or “parameter”, as called by the FCS standard). We can see the number of events and channels using the standard numpy’s shape property:

>>> print(s.shape)
(32224, 8)

As with any numpy array, we can slice an FCSData object. For example, let’s obtain the first 100 events.

>>> s_sub = s[:100]
>>> print(s_sub.shape)
(100, 8)

Note that the product of slicing an FCSData object is also an FCSData object. We can also get all the events in a subset of channels by slicing in the second dimension.

>>> s_sub_ch = s[:, [3, 4, 5]]
>>> print(s_sub_ch.shape)
(32224, 3)

However, it is not immediately obvious what channels we are getting. Fortunately, the FCSData object contains some additional information about the acquisition settings. In particular, we can check the name of the channels with the channels property.

>>> print(s.channels)
('TIME', 'FSC', 'SSC', 'FL1', 'FL2', 'FL3', 'FSCW', 'FSCA')
>>> print(s_sub_ch.channels)
('FL1', 'FL2', 'FL3')

It turns out that s_sub_ch contains the fluorescence channels FL1, FL2, and FL3.

One of the most practical features of an FCSData object is the ability to slice channels using their name. For example, if we want the fluorescence channels we can use the following.

>>> s_sub_ch_2 = s[:, ['FL1', 'FL2', 'FL3']]
>>> print(s_sub_ch_2.channels)
('FL1', 'FL2', 'FL3')

This is completely equivalent to indexing with integers.

>>> import numpy as np
>>> np.all(s_sub_ch == s_sub_ch_2)
True

FCSData contains more acquisition information, such as the acquisition time, amplifier type, and the detector voltage of each channel. For more information, consult the documentation of FlowCal.io.FCSData.

Transforming Flow Cytometry Data

This tutorial focuses on how to perform basic transformations to flow cytometry data using FlowCal, particularly by using the module FlowCal.transform

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then, import FlowCal as with any other python module.

>>> import FlowCal

Transforming to Arbitrary Fluorescence Units (a.u.)

Start by loading file sample006.fcs into an FCSData object called s.

>>> s = FlowCal.io.FCSData('FCFiles/sample006.fcs')

Let’s now visualize the contents of the FL1 channel. We will explore FlowCal’s plotting functions in the plotting tutorial, but for now let’s just use matplotlib’s hist function.

>>> import matplotlib.pyplot as plt
>>> plt.hist(s[:, 'FL1'], bins=100)
>>> plt.show()

[image: ../_images/python_tutorial_transform_1.png]
Note that the range of the x axis is from 0 to around 800. However, our acquisition software showed fluorescence values from 1 to 10000. Where does the difference come from? An FCS file normally stores raw numbers as they are are reported by the instrument sensors. These are referred to as “channel numbers”. The FCS file also contains enough information to transform these numbers back to proper fluorescence units, called Relative Fluorescence Intensities (RFI), or more commonly, arbitrary fluorescence units (a.u.). Depending on the instrument used, this conversion sometimes involves a simple scaling factor, but other times requires a non-straigthforward exponential transformation. The latter is our case.

Fortunately, FlowCal includes FlowCal.transform.to_rfi(), a function that reads all the necessary paremeters from the FCS file and figures out how to convert data back to a.u.

>>> s_transformed = FlowCal.transform.to_rfi(s, channels='FL1')

s_transformed now contains the same data as s, except that the FL1 channel has been transformed to a.u. Let’s now look at the transformed data.

>>> import numpy as np
>>> bins = np.logspace(0, 4, 100)
>>> plt.hist(s_transformed[:, 'FL1'], bins=bins)
>>> plt.xscale('log')
>>> plt.show()

[image: ../_images/python_tutorial_transform_2.png]
We will explore a more convenient way to plot transformed data in the plotting tutorial.

FlowCal.transform.to_rfi() can transform several channels at the same time. In fact, all channels will be transformed if no channel is specified.

>>> s_transformed = FlowCal.transform.to_rfi(s)

We will use this throughout the whole tutorial right after loading an FCSData object.

Transforming to Molecules of Equivalent Fluorophore (MEF)

FlowCal includes the ability to transform flow cytometry data to Molecules of Equivalent Fluorophore (MEF), a unit independent of the acquisition settings. However, doing so is slightly more complex. We will see how to do this in the MEF tutorial.

Plotting Flow Cytometry Data

This tutorial focuses on how to plot flow cytometry data using FlowCal, particularly by using the module FlowCal.plot

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then, import FlowCal as with any other python module.

>>> import FlowCal

Also, import numpy and pyplot from matplotlib

>>> import numpy as np
>>> import matplotlib.pyplot as plt

Histograms

Let’s load the data from file sample006.fcs into an FCSData object called s, and tranform all channels to arbitrary units.

>>> s = FlowCal.io.FCSData('FCFiles/sample006.fcs')
>>> s = FlowCal.transform.to_rfi(s)

One is often interested in the fluorescence distribution across a population of cells. This is represented in a histogram. Since FCSData is a numpy array, one could use the standard hist function included in matplotlib. Alternatively, FlowCal includes its own histogram function specifically tailored to work with FCSData objects. For example, one can plot the contents of the FL1 channel with a single call to FlowCal.plot.hist1d().

>>> FlowCal.plot.hist1d(s, channel='FL1')
>>> plt.show()

[image: ../_images/python_tutorial_plot_hist1d_1.png]
FlowCal.plot.hist1d() behaves mostly like a regular matplotlib plotting function: it will plot in the current figure and axis. The axes labels are populated by default, but one can still use plt.xlabel and plt.ylabel to change them.

By default, FlowCal.plot.hist1d() uses something called logicle scaling for the x axis. This scaling allows visualization of high fluorescence values with logarithmic spacing, and low fluorescence values with a more linear spacing. In some modern flow cytometers, negative events may be present, and logicle scaling allows visualization of those as well. This can be changed to a more conventional linear or logarithmic scale by using the xscale argument. In addition, FlowCal.plot.hist1d() uses 256 uniformly spaced bins by default. We can override the default bins using the bins argument. Let’s try using 1024 logarithmically-spaced bins.

>>> FlowCal.plot.hist1d(s, channel='FL1', xscale='log', bins=1024)
>>> plt.show()

[image: ../_images/python_tutorial_plot_hist1d_2.png]
Finally, FlowCal.plot.hist1d() can plot several FCSData objects at the same time. Let’s now load 3 FCSData objects, transform all channels to a.u., and plot the FL1 channel of all three with transparency.

>>> filenames = ['FCFiles/sample{:03d}.fcs'.format(i + 9) for i in range(3)]
>>> d = [FlowCal.io.FCSData(filename) for filename in filenames]
>>> d = [FlowCal.transform.to_rfi(di) for di in d]
>>> FlowCal.plot.hist1d(d, channel='FL1', alpha=0.7, bins=128)
>>> plt.legend(filenames, loc='upper left')
>>> plt.show()

[image: ../_images/python_tutorial_plot_hist1d_3.png]

Density Plots

It is also common to look at the forward scatter and side scatter values in a 2D histogram, scatter plot, or density diagram. From those, the user can extract size and shape information that would allow him to differentiate between cells and debris. FlowCal includes the function FlowCal.plot.density2d() for this purpose.

Let’s look at the FSC and SSC channels in our sample s.

>>> FlowCal.plot.density2d(s, channels=['FSC', 'SSC'])
>>> plt.show()

[image: ../_images/python_tutorial_plot_density_2d_1.png]
The color indicates the number of events in the region, with red indicating a bigger number than yellow and blue, in that order, by default. Similarly to FlowCal.plot.hist1d(), FlowCal.plot.density2d() uses logicle scaling by default. In addition, FlowCal.plot.density2d() applies, by default, gaussian smoothing to the density plot.

FlowCal.plot.density2d() includes two visualization modes: mesh (seen above), and scatter. The last one is good for distinguishing regions with few events.

>>> FlowCal.plot.density2d(s, channels=['FSC', 'SSC'], mode='scatter')
>>> plt.show()

[image: ../_images/python_tutorial_plot_density_2d_2.png]
The last plot shows three distinct populations. The large one in the middle corresponds to cells, whereas the ones at the left and below correspond to non-biological debris. We will see how to “gate”, or select only one population, in the gating tutorial.

Combined Histogram and Density Plots

FlowCal also includes “complex plot” functions, which produce their own figure and a set of axes, and use simple matplotlib or FlowCal plotting functions to populate them.

In particular, FlowCal.plot.density_and_hist() uses FlowCal.plot.hist1d() and FlowCal.plot.density2d() to produce a combined density plot/histogram that allow the user to quickly see information about one sample. For example, let’s plot the FSC and SSC channels in a density plot, and the FL1 channel in a histogram. In the following, density_params and hist_params are dictionaries that are directly passed to FlowCal.plot.hist1d() and FlowCal.plot.density2d() as keyword arguments.

>>> FlowCal.plot.density_and_hist(s,
... density_channels=['FSC', 'SSC'],
... density_params={'mode':'scatter'},
... hist_channels=['FL1'])
>>> plt.tight_layout()
>>> plt.show()

[image: ../_images/python_tutorial_plot_density_and_hist_1.png]
FlowCal.plot.density_and_hist() can also plot data before and after applying gates. We will see this in the gating tutorial.

Violin Plots

Histograms, as shown above, can be used to plot and compare data from multiple samples. However, they can easily get too crowded. A more compact way is to use a violin plot, wherein vertical, normalized, symmetrical histograms (“violins”) are shown centered on corresponding x-axis values. We can do this with the FlowCal.plot.violin() function.

>>> filenames = ['FCFiles/sample{:03d}.fcs'.format(i+6) for i in range(10)]
>>> d = [FlowCal.io.FCSData(filename) for filename in filenames]
>>> d = [FlowCal.transform.to_rfi(di) for di in d]
>>> dapg = np.array([0, 2.33, 4.36, 8.16, 15.3, 28.6, 53.5, 100, 187, 350])
>>> FlowCal.plot.violin(data=d, channel='FL1', positions=dapg, xlabel='DAPG (uM)', xscale='log', ylim=(1e0,2e3))
>>> plt.show()

[image: ../_images/python_tutorial_plot_violin_1.png]
Note that the x axis has been plotted on a logarithmic scale using the xscale argument. Because data at position x=0 is specified, FlowCal.plot.violin() places it separately on the left side of the plot. In contrast, the y-axis is plotted on a logicle scale by default. However, it can be switched to log or linear using the argument yscale. Horizontal violin plots can also be generated by setting the vert argument to False. For more options, consult the function documentation.

“Dose response” or “transfer” functions are common in biology. These sometimes include minimum (negative) and maximum (positive) controls, and are often approximated by mathematical models. The FlowCal.plot.violin_dose_response() function can be used to plot a full dose response dataset, including min data, max data, and a mathematical model. Min and max data are illustrated to the left of the plot, and the mathematical model is correctly illustrated even when a position=0 violin is illustrated separately when xscale is log.

>>> # Function specifying mathematical model
>>> def dapg_sensor_model(dapg_concentration):
>>> mn = 20
>>> mx = 250.
>>> K = 20.
>>> n = 3.57
>>> if dapg_concentration <= 0:
>>> return mn
>>> else:
>>> return mn + ((mx-mn)/(1+((K/dapg_concentration)**n)))
>>>
>>> # Plot
>>> FlowCal.plot.violin_dose_response(
>>> data=d,
>>> channel='FL1',
>>> positions=dapg,
>>> min_data=d[0],
>>> max_data=d[-1],
>>> model_fxn=dapg_sensor_model,
>>> xscale='log',
>>> yscale='log',
>>> ylim=(1e0,2e3),
>>> draw_model_kwargs={'color':'gray',
>>> 'linewidth':3,
>>> 'zorder':-1,
>>> 'solid_capstyle':'butt'})
>>> plt.xlabel('DAPG Concentration (μM)')
>>> plt.ylabel('FL1 Fluorescence (a.u.)')
>>> plt.show()

[image: ../_images/python_tutorial_plot_violin_2.png]

Other Plotting Functions

These are not the only functions in FlowCal.plot. For more information, consult the API reference.

Gating Flow Cytometry Data

This tutorial focuses on how to gate flow cytometry data using FlowCal, particularly by using the module FlowCal.gate. Gating is the process of retaining events that satisfy some criteria, and discarding the ones that do not.

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then, import FlowCal as with any other python module.

>>> import FlowCal

Also, import numpy and pyplot from matplotlib

>>> import numpy as np
>>> import matplotlib.pyplot as plt

Removing Saturated Events

We’ll start by loading the data from file sample006.fcs into an FCSData object called s. Then, transform all channels into a.u.

>>> s = FlowCal.io.FCSData('FCFiles/sample006.fcs')
>>> s = FlowCal.transform.to_rfi(s)

In the plotting tutorial we looked at a density plot of the forward scatter/side scatter (FSC/SSC) channels and identified several clusters of particles (events). This density plot is repeated below for convenience.

[image: ../_images/python_tutorial_plot_density_2d_2.png]
From these subpopulations, the faint elongated one in the low-middle portion corresponds to non-cellular debris, and the large one in the middle corresponds to cells. One additional elongated subpopulation on the left corresponds to saturated events, with the lowest possible forward scatter value: 1 a.u..

Some flow cytometers will capture events outside of their range and assign them either the lowest or highest possible values of a channel, depending on which side of the range they fall on. We call these events “saturated”. Including them in the analysis results, most of the time, in distorted distribution shapes and incorrect statistics. Therefore, it is generally advised to remove saturated events. To do so, FlowCal incorporates the function FlowCal.gate.high_low(). This function retains all the events in the specified channels between two specified values: a high and a low threshold. If these values are not specified, however, the function uses the saturating values.

>>> s_g1 = FlowCal.gate.high_low(s, channels=['FSC', 'SSC'])
>>> FlowCal.plot.density2d(s_g1,
... channels=['FSC', 'SSC'],
... mode='scatter')
>>> plt.show()

[image: ../_images/python_tutorial_gate_high_low_1.png]
We successfully removed the events on the left. We can go one step further and use FlowCal.gate.high_low() again to remove some of the events below the main event cluster, which as we said before corresponds to debris.

>>> s_g2 = FlowCal.gate.high_low(s_g1, channels='SSC', low=280)
>>> FlowCal.plot.density2d(s_g2,
... channels=['FSC', 'SSC'],
... mode='scatter')
>>> plt.show()

[image: ../_images/python_tutorial_gate_high_low_2.png]
This approach, however, requires one to estimate a low threshold value for every sample manually. In addition, we usually want events in the densest forward scatter/side scatter region, which requires a more complex shape than a pair of thresholds. We will now explore better ways to achieve this.

Ellipse Gate

FlowCal includes an ellipse-shaped gate, in which events are retained if they fall inside an ellipse with a specified center and dimensions. Let’s try to obtain the densest region of the cell cluster.

>>> s_g3 = FlowCal.gate.ellipse(s_g1,
... channels=['FSC', 'SSC'],
... log=True,
... center=(2.3, 2.78),
... a=0.3,
... b=0.2,
... theta=30/180.*np.pi)
>>> FlowCal.plot.density2d(s_g3,
... channels=['FSC', 'SSC'],
... mode='scatter')
>>> plt.show()

[image: ../_images/python_tutorial_gate_ellipse_1.png]
As shown above, the remaining events reside only inside an ellipse-shaped region. Note that we used the argument log, which indicates that the gated region should look like an ellipse in a logarithmic plot. This also requires that the center and the major and minor axes (a and b) be specified in log space.

The disadvantage of this gate is that several parameters need to be specified, which make the resulting gate arbitrary. In addition, it is questionable whether we’re actually capturing the densest part of the distribution. Using the mean or median as centers results in similar issues because the original cell distribution is not symmetrical. The next gate solves these issues.

Density Gate

FlowCal.gate.density2d() automatically identifies the region with the highest density of events in a two-dimensional diagram, and calculates how big it should be to capture a certain percentage of the total event count. One advantage is that the number of user-defined parameters is reduced to one. Let’s now try to separate cells from debris using this method.

>>> s_g4 = FlowCal.gate.density2d(s_g1,
... channels=['FSC', 'SSC'],
... gate_fraction=0.75)
>>> FlowCal.plot.density2d(s_g4,
... channels=['FSC', 'SSC'],
... mode='scatter')
>>> plt.show()

[image: ../_images/python_tutorial_gate_density_1.png]
We can see that FlowCal.gate.density2d() automatically identified the region that contains cells, and defined a shape that more closely resembles what the ungated density map looks like. The parameter gating_fraction allows the user to control the fraction of events to retain, and it is the only parameter that the user is required to specify.

For more details on how FlowCal.gate.density2d() works, consult the section on fundamentals of density gating.

Plotting 2D Gates

Finally, we will see a better way to visualize the result of applying a 2D gate. First, we will use density gating again, but this time we will do it a little differently.

>>> density_gate_output = FlowCal.gate.density2d(s_g1,
... channels=['FSC', 'SSC'],
... gate_fraction=0.75,
... full_output=True)
>>> s_g5 = density_gate_output.gated_data
>>> m_g5 = density_gate_output.mask
>>> contour = density_gate_output.contour

The extra argument, full_output, is available in every function in FlowCal.gate. It instructs a gating function to return additional output arguments with information about the gating process. The second output argument is always a mask (extracted here from the Density2dGateOutput namedtuple using its field name), which is a boolean array that indicates which events from the original FCSData object are being retained by the gate. Two-dimensional gating functions have a third output argument: a contour surrounding the gated region, which we will now use for plotting.

The function FlowCal.plot.density_and_hist() was introduced in the plotting tutorial to produce plots of a single FCSData object. But it can also be used to plot the result of a gating step, showing the data before and after gating, and the gating contour. Let’s use this ability to show the result of the density gating process.

>>> FlowCal.plot.density_and_hist(s_g1,
... gated_data=s_g5,
... gate_contour=contour,
... density_channels=['FSC', 'SSC'],
... density_params={'mode':'scatter'},
... hist_channels=['FL1'])
>>> plt.tight_layout()
>>> plt.show()

[image: ../_images/python_tutorial_gate_density_2.png]
We can now observe the gating contour right on top of the ungated data, and see which events were kept and which ones were left out. In addition, we can visualize how gating affected the other channels.

Calibrating Flow Cytometry Data to MEF

This tutorial focuses on how to transform flow cytometry data to Molecules of Equivalent Fluorophore (MEF) using FlowCal, particularly by using the module FlowCal.mef. For more information on MEF calibration, see the section on fundamentals of calibration.

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then, import FlowCal as with any other python module.

>>> import FlowCal

Also, import numpy and pyplot from matplotlib

>>> import numpy as np
>>> import matplotlib.pyplot as plt

Working with Calibration Beads

As mentioned in the fundamentals section, conversion to MEF requires measuring calibration beads. sample001.fcs in the FCFiles folder contains beads data. Let’s examine it.

>>> b = FlowCal.io.FCSData('FCFiles/sample001.fcs')
>>> b = FlowCal.transform.to_rfi(b)
>>> density_gate_output = FlowCal.gate.density2d(b,
... channels=['FSC', 'SSC'],
... gate_fraction=0.3,
... full_output=True)
>>> b_g = density_gate_output.gated_data
>>> c = density_gate_output.contour
>>> FlowCal.plot.density_and_hist(b,
... gated_data=b_g,
... gate_contour=c,
... density_channels=['FSC', 'SSC'],
... density_params={'mode':'scatter',
... 'xlim': [1e2, 1e3],
... 'ylim': [1e2, 1e3],
... 'sigma': 5.},
... hist_channels=['FL1'])
>>> plt.tight_layout()
>>> plt.show()

[image: ../_images/python_tutorial_mef_1.png]
The FSC/SSC density plot shows two groups of events: the dense group in the middle corresponds to single beads, whereas the fainter cluster on the upper right corresponds to bead agglomerations. Only single beads should be used, so FlowCal.gate.density2d() is used here to identify single beads automatically. Looking at the FL1 histogram, we can clearly distinguish 8 subpopulations with different fluorescence levels. Note that the group with the highest fluorescence seems to be close to saturation.

MEF Transformation in FlowCal

We saw in the transformation tutorial that a transformation function is needed to convert flow cytometry data from raw sensor numbers, as stored in FCS files, to fluorescence values in a.u. Similarly, FlowCal uses transformation functions to convert these to MEF. However, these functions have to be generated during analysis using a calibration bead sample. Once a function is generated, though, it can be used to convert many cell samples to MEF, provided that beads and samples have been acquired using the same settings.

Generating a transformation function from calibration beads data is a complicated process, therefore FlowCal has an entire module dedicated to it: FlowCal.mef. The main function in this module, FlowCal.mef.get_transform_fxn(), requires at least the following information: calibration beads data, the names of the channels for which a MEF transformation function should be generated, and manufacturer-provided MEF values of each subpopulation for each channel. Let’s now use FlowCal.mef.get_transform_fxn() to obtain a transformation function.

>>> # Obtain transformation function
>>> # The following MEFL values were provided by the beads' manufacturer
>>> mefl_values = np.array([0, 792, 2079, 6588, 16471, 47497, 137049, 271647])
>>> to_mef = FlowCal.mef.get_transform_fxn(b_g,
... mef_values=mefl_values,
... mef_channels='FL1',
... plot=True)
>>> plt.show()

The argument plot instructs FlowCal.mef.get_transform_fxn() to generate and save plots showing the individual steps of bead data analysis. We will look at these plots and how to interpret them in the next section. We recommend to always generate these plots to confirm that the standard curve was generated properly.

Let’s now use to_mef to transform fluroescence data to MEF.

>>> # Load sample
>>> s = FlowCal.io.FCSData('FCFiles/sample006.fcs')
>>>
>>> # Transform all channels to a.u., and then FL1 to MEF.
>>> s = FlowCal.transform.to_rfi(s)
>>> s = to_mef(s, channels='FL1')
>>>
>>> # Gate
>>> s_g = FlowCal.gate.high_low(s, channels=['FSC', 'SSC'])
>>> s_g = FlowCal.gate.density2d(s_g,
... channels=['FSC', 'SSC'],
... gate_fraction=0.5)
>>>
>>> # Plot histogram of transformed channel
>>> FlowCal.plot.hist1d(s_g, channel='FL1')
>>> plt.show()

[image: ../_images/python_tutorial_mef_2.png]
s_g now contains FL1 fluorescence values in MEF units. Note that the values in the x axis of the histogram do not match the ones showed before in channel (raw) units or a.u.. This is always true in general, because fluorescence is now expressed in different units.

Generation of a MEF Transformation Function

We will now give a short description of the process that FlowCal.mef.get_transform_fxn() uses to generate a transformation function from beads data. We will also examine the plots produced by FlowCal.mef.get_transform_fxn() and discuss how these plots can reveal problems with the analysis. In the following, <beads_filename> refers to the file name of the FSC cotaining beads data, which was provided to FlowCal.mef.get_transform_fxn(). This discussion is parallel to the one in the fundamentals of calibration document, but at a higher technical level.

Generating a MEF transformation function involves four steps:

1. Identification of Bead Subpopulations

FlowCal uses a clustering algorithm to automatically identify the different subpopulations of beads. The algorithm will try to find as many populations as values are provided in mef_values.

A plot with a default filename of clustering_<beads_filename>.png is generated by FlowCal.mef.get_transform_fxn() after the completion of this step. This plot is a histogram or scatter plot in which different subpopulations are shown in a different colors. Such plot is shown below, for sample001.fcs.

[image: ../_images/python_tutorial_mef_3.png]
It is always visually clear which events correspond to which groups, and the different colors should correspond to this expectation. If they don’t, sometimes it helps to use a different set of fluorescence channels for clustering (see below), or to use a different gating fraction in the previous density gating step.

The default clustering algorithm is Gaussian Mixture Models, implemented in FlowCal.mef.clustering_gmm(). However, a function implementing another clustering algorithm can be provided to FlowCal.mef.get_transform_fxn() through the argument clustering_fxn. In addition, the argument clustering_channels specifies which channels to use for clustering. This can be different than mef_channels, the channels for which to generate a standard curve. A plot resulting from clustering with two fluroescence channels is shown below.

[image: ../_images/python_tutorial_mef_4.png]

2. Calculation of Population Statistics

For each channel in mef_channels, a representative fluorescence value in a.u. is calculated for each subpopulation. By default, the median of each population is used, but this can be customized using the statistic_fxn parameter.

3. Population Selection

For each channel in mef_channels, subpopulations close to saturation are discarded.

A plot with a default filename of populations_<channel>_<beads_filename>.png is generated by FlowCal.mef.get_transform_fxn() for each channel in mef_channels after the completion of this step. This plot is a histogram showing each population, as identified in step one, with vertical lines showing their representative statistic as calculated from step 2, and with the discarded populations colored in grey. Such plot is shown below, for sample001.fcs and channel FL1.

[image: ../_images/python_tutorial_mef_5.png]
By default, populations whose mean is closer than a few standard deviations from one of the edge values are discarded. This is encoded in the function FlowCal.mef.selection_std(). A different method can be used by providing a different function to FlowCal.mef.get_transform_fxn() through the argument selection_fxn. This argument can even be None, in which case no populations are discarded. Finally, one can manually discard a population by using None as its MEF fluorescence value in mef_values. Discarding populations specified in this way is performed in addition to selection_fxn.

4. Standard Curve Calculation

A bead fluorescence model is fitted to the fluorescence values of each subpopulation in a.u., as calculated in step 2, and in MEF units, as provided in mef_values. A standard curve can then be calculated from the bead fluorescence model.

A plot with a default filename of std_crv_<channel>_<beads_filename>.png is generated by FlowCal.mef.get_transform_fxn() for each channel in mef_channels after the completion of this step. This plot shows the fluorescence values of each population in a.u. and MEF, the fitted bead fluorescence model, and the resulting standard curve. Such plot is shown below, for sample001.fcs and channel FL1.

[image: ../_images/python_tutorial_mef_6.png]
It is worth noting that the bead fluorescence model and the standard curve are different, in that bead fluorescence is also affected by bead autofluorescence, its fluorescence when no fluorophore is present. To obtain the standard curve, autofluorescence is eliminated from the model. Such a model is fitted in FlowCal.mef.fit_beads_autofluorescence(), but a different model can be provided to FlowCal.mef.get_transform_fxn() using the argument fitting_fxn.

After these steps, a transformation function is generated using the standard curve, and returned.

FlowCal.mef.get_transform_fxn() has more customization options. For more information, consult the reference.

Processing FCS Files with the Excel UI

This tutorial focuses on how to obtain processed flow cytometry data from FlowCal’s Excel UI into python. This document assumes that the reader is familiar with FlowCal’s Excel UI. For more information, please refer to the Excel UI documentation.

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then, import FlowCal as with any other python module.

>>> import FlowCal

Introduction

FlowCal is a very flexible package that allows the user to perform different gating and transformation operations on flow cytometry data. As we saw in the MEF tutorial, the process of transformation to MEF units also allows for a lot of customization. However, for most experiments the user might simply want to follow a procedure similar to this:

	Open calibration beads files

	Perform density gating in forward/side scatter to eliminate bead aggregates

	Obtain standard curves for each fluorescence channel of interest

	Open cell sample files

	Perform density gating in forward/side scatter to eliminate aggregates and non-cellular debris.

	Transform the fluorescence of cell samples to MEF using the standard curves obtained in step 3.

After this, what follows is highly dependent on the type of experiment. Some might be interested, for example, in the geometric mean fluorescence and standard deviation of cell samples as a function of some inducer. For these cases, the Excel UI allows to easily specify a set of FCS files that will be processed as described above, and generate a set of statistics for each fluorescence channel of interest. This is performed through a convenient input Excel file, which can also document other information about the experiment, such as inducer level of each sample.

However, some applications demand more complicated downstream processing, such as n-dimensional fluorescence analysis, which will inevitably require programming. In these cases, one can still use FlowCal’s Excel UI to process files as above, and return transformed and gated FCSData objects for each specified FCS file to python, along with extra information contained in the input Excel file. This workflow combines the convenience of maintaining experimental information in an Excel file, the consistency of a standard FCS file processing pipeline, and the power of performing numerical analysis in python. We will now describe how to do this.

Processing Samples with the Excel UI

For this tutorial, we will analyze all the data in the examples/FCFiles folder using the input Excel file, examples/experiment.xlsx. This is the same file described in the Excel UI documentation.

First, load the necessary tables from this file.

>>> input_file = 'experiment.xlsx'
>>> instruments_table = FlowCal.excel_ui.read_table(input_file,
... sheetname='Instruments',
... index_col='ID')
>>> beads_table = FlowCal.excel_ui.read_table(input_file,
... sheetname='Beads',
... index_col='ID')
>>> samples_table = FlowCal.excel_ui.read_table(input_file,
... sheetname='Samples',
... index_col='ID')

FlowCal.excel_ui.read_table() returns the contents of a sheet from an Excel file as a pandas DataFrame. The file name is specified as the first argument, and the index_col argument specified which column to use as the DataFrame’s index. For more information about DataFrames, consult pandas’ documentation [http://pandas.pydata.org/pandas-docs/stable/dsintro.html].

From there, one can obtain the file name and analysis options of each beads file, and call all the necessary FlowCal functions to perform density gating and standard curve calculation. Or one could let the Excel UI do all that with the following instruction:

>>> beads_samples, mef_transform_fxns = FlowCal.excel_ui.process_beads_table(
... beads_table,
... instruments_table,
... verbose=True,
... plot=True)

FlowCal.excel_ui.process_beads_table uses the instruments table and the beads table to automatically open, density-gate, and transform the specified beads files, and generate MEF transformation functions as indicated by the Excel input file. The flags verbose and plot instruct the function to generate messages for each file being processed, and plots for each step of standard curve calculation, similar to what we saw in the MEF tutorial. The output arguments are beads_samples, a dictionary of transformed and gated FCSData objects, and mef_transform_fxns, a dictionary of MEF transformation functions, each indexed by the ID of the beads files.

In a similar way, FlowCal’s Excel UI can automatically density-gate and transform cell samples using a single instruction:

>>> samples = FlowCal.excel_ui.process_samples_table(
... samples_table,
... instruments_table,
... mef_transform_fxns=mef_transform_fxns,
... verbose=True,
... plot=True)

FlowCal.excel_ui.process_samples_table uses the instruments and samples tables to open, density-gate, and transform cell samples as specified, and return the processed data as a dictionary of FCSData objects. If the input Excel file specifies that some samples should be transformed to MEF, FlowCal.excel_ui.process_samples_table also requires a dictionary with the respective MEF transformation functions (mef_transform_fxns), which was provided in the previous step by FlowCal.excel_ui.process_beads_table.

This is all the code required to obtain a set of processed cell samples. From here, one can perform any desired analysis on samples. Note that samples_table contains any other information in the input Excel file not directly used by FlowCal, such as inducer concentration, incubation time, etc. This can be used to build an induction curve, fluorescence vs. final optical density (OD), etc.

FlowCal (Python API) Reference

	FlowCal.excel_ui module

	FlowCal.gate module

	FlowCal.io module

	FlowCal.mef module

	FlowCal.plot module

	FlowCal.stats module

	FlowCal.transform module

FlowCal.excel_ui module

FlowCal’s Microsoft Excel User Interface.

This module contains functions to read, gate, and transform data from a set
of FCS files, as specified by an input Microsoft Excel file. This file
should contain the following tables:

	Instruments: Describes the instruments used to acquire the
samples listed in the other tables. Each instrument is specified by a
row containing at least the following fields:

	ID: Short string identifying the instrument. Will be referenced
by samples in the other tables.

	Forward Scatter Channel: Name of the forward scatter channel,
as specified by the $PnN keyword in the associated FCS files.

	Side Scatter Channel: Name of the side scatter channel, as
specified by the $PnN keyword in the associated FCS files.

	Fluorescence Channels: Name of the fluorescence channels in a
comma-separated list, as specified by the $PnN keyword in the
associated FCS files.

	Time Channel: Name of the time channel, as specified by the
$PnN keyword in the associated FCS files.

	Beads: Describes the calibration beads samples that will be used
to calibrate cell samples in the Samples table. The following
information should be available for each beads sample:

	ID: Short string identifying the beads sample. Will be
referenced by cell samples in the Samples table.

	Instrument ID: ID of the instrument used to acquire the sample.
Must match one of the rows in the Instruments table.

	File Path: Path of the FCS file containing the sample’s data.

	<Fluorescence Channel Name> MEF Values: The fluorescence in MEF
of each bead subpopulation, as given by the manufacturer, as a
comma-separated list of numbers. Any element of this list can be
replaced with the word None, in which case the corresponding
subpopulation will not be used when fitting the beads fluorescence
model. Note that the number of elements in this list (including
the elements equal to None) are the number of subpopulations
that FlowCal will try to find.

	Gate fraction: The fraction of events to keep from the sample
after density-gating in the forward/side scatter channels.

	Clustering Channels: The fluorescence channels used to identify
the different bead subpopulations.

	Samples: Describes the biological samples to be processed. The
following information should be available for each sample:

	ID: Short string identifying the sample. Will be used as part
of the plot’s filenames and in the Histograms table in the
output Excel file.

	Instrument ID: ID of the instrument used to acquire the sample.
Must match one of the rows in the Instruments table.

	Beads ID: ID of the beads sample used to convert data to
calibrated MEF.

	File Path: Path of the FCS file containing the sample’s data.

	<Fluorescence Channel Name> Units: Units to which the event
list in the specified fluorescence channel should be converted, and
all the subsequent plots and statistics should be reported. Should
be one of the following: “Channel” (raw units), “a.u.” or “RFI”
(arbitrary units) or “MEF” (calibrated Molecules of Equivalent
Fluorophore). If “MEF” is specified, the Beads ID should be
populated, and should correspond to a beads sample with the
MEF Values specified for the same channel.

	Gate fraction: The fraction of events to keep from the sample
after density-gating in the forward/side scatter channels.

Any columns other than the ones specified above can be present, but will be
ignored by FlowCal.

	
exception FlowCal.excel_ui.ExcelUIException

	Bases: Exception

FlowCal Excel UI Error.

	
FlowCal.excel_ui.add_beads_stats(beads_table, beads_samples, mef_outputs=None)

	Add stats fields to beads table.

The following information is added to each row:

	Notes (warnings, errors) resulting from the analysis

	Number of Events

	Acquisition Time (s)

The following information is added for each row, for each channel in
which MEF values have been specified:

	Detector voltage (gain)

	Amplification type

	Bead model fitted parameters

	Parameters

	
	beads_tableDataFrame

	Table specifying bead samples to analyze. For more information
about the fields required in this table, please consult the
module’s documentation.

	beads_samplesdict or OrderedDict

	FCSData objects from which to calculate statistics.
beads_samples[id] should correspond to beads_table.loc[id,:].

	mef_outputsdict or OrderedDict, optional

	Intermediate results from the generation of the MEF transformation
functions, as given by mef.get_transform_fxn(). This is used to
populate the fields <channel> Beads Model,
<channel> Beads Params. Names, and
<channel> Beads Params. Values. If specified,
mef_outputs[id] should correspond to beads_table.loc[id,:].

	
FlowCal.excel_ui.add_samples_stats(samples_table, samples)

	Add stats fields to samples table.

The following information is added to each row:

	Notes (warnings, errors) resulting from the analysis

	Number of Events

	Acquisition Time (s)

The following information is added for each row, for each channel in
which fluorescence units have been specified:

	Detector voltage (gain)

	Amplification type

	Mean

	Geometric Mean

	Median

	Mode

	Standard Deviation

	Coefficient of Variation (CV)

	Geometric Standard Deviation

	Geometric Coefficient of Variation

	Inter-Quartile Range

	Robust Coefficient of Variation (RCV)

	Parameters

	
	samples_tableDataFrame

	Table specifying samples to analyze. For more information about the
fields required in this table, please consult the module’s
documentation.

	samplesdict or OrderedDict

	FCSData objects from which to calculate statistics. samples[id]
should correspond to samples_table.loc[id,:].

Notes

Geometric statistics (geometric mean, standard deviation, and geometric
coefficient of variation) are defined only for positive data. If there
are negative events in any relevant channel of any member of samples,
geometric statistics will only be calculated on the positive events,
and a warning message will be written to the “Analysis Notes” field.

	
FlowCal.excel_ui.generate_about_table(extra_info={})

	Make a table with information about FlowCal and the current analysis.

	Parameters

	
	extra_infodict, optional

	Additional keyword:value pairs to include in the table.

	Returns

	
	about_tableDataFrame

	Table with information about FlowCal and the current analysis, as
keyword:value pairs. The following keywords are included: FlowCal
version, and date and time of analysis. Keywords and values from
extra_info are also included.

	
FlowCal.excel_ui.generate_histograms_table(samples_table, samples, max_bins=1024)

	Generate a table of histograms as a DataFrame.

	Parameters

	
	samples_tableDataFrame

	Table specifying samples to analyze. For more information about the
fields required in this table, please consult the module’s
documentation.

	samplesdict or OrderedDict

	FCSData objects from which to calculate statistics. samples[id]
should correspond to samples_table.loc[id,:].

	max_binsint, optional

	Maximum number of bins to use.

	Returns

	
	hist_tableDataFrame

	A multi-indexed DataFrame. Rows contain the histogram bins and
counts for every sample and channel specified in samples_table.
hist_table is indexed by the sample’s ID, the channel name,
and whether the row corresponds to bins or counts.

	
FlowCal.excel_ui.process_beads_table(beads_table, instruments_table, base_dir='.', verbose=False, plot=False, plot_dir=None, full_output=False, get_transform_fxn_kwargs={})

	Process calibration bead samples, as specified by an input table.

This function processes the entries in beads_table. For each row, the
function does the following:

	Load the FCS file specified in the field “File Path”.

	Transform the forward scatter/side scatter and fluorescence
channels to RFI

	Remove the 250 first and 100 last events.

	Remove saturated events in the forward scatter and side scatter
channels.

	Apply density gating on the forward scatter/side scatter
channels.

	Generate a standard curve transformation function, for each
fluorescence channel in which the associated MEF values are
specified.

	Generate forward/side scatter density plots and fluorescence
histograms, and plots of the clustering and fitting steps of
standard curve generation, if plot = True.

Names of forward/side scatter and fluorescence channels are taken from
instruments_table.

	Parameters

	
	beads_tableDataFrame

	Table specifying beads samples to be processed. For more
information about the fields required in this table, please consult
the module’s documentation.

	instruments_tableDataFrame

	Table specifying instruments. For more information about the fields
required in this table, please consult the module’s documentation.

	base_dirstr, optional

	Directory from where all the other paths are specified.

	verbosebool, optional

	Whether to print information messages during the execution of this
function.

	plotbool, optional

	Whether to generate and save density/histogram plots of each
sample, and each beads sample.

	plot_dirstr, optional

	Directory relative to base_dir into which plots are saved. If
plot is False, this parameter is ignored. If plot==True and
plot_dir is None, plot without saving.

	full_outputbool, optional

	Flag indicating whether to include an additional output, containing
intermediate results from the generation of the MEF transformation
functions.

	get_transform_fxn_kwargsdict, optional

	Additional parameters passed directly to internal
mef.get_transform_fxn() function call.

	Returns

	
	beads_samplesOrderedDict

	Processed, gated, and transformed samples, indexed by
beads_table.index.

	mef_transform_fxnsOrderedDict

	MEF transformation functions, indexed by beads_table.index.

	mef_outputsOrderedDict, only if full_output==True

	Intermediate results from the generation of the MEF transformation
functions. For every entry in beads_table,
FlowCal.mef.get_transform_fxn() is called on the
corresponding processed and gated beads sample with
full_output=True, and the full output (a MEFOutput
namedtuple) is added to mef_outputs. mef_outputs is indexed
by beads_table.index. Refer to the documentation for
FlowCal.mef.get_transform_fxn() for more information.

	
FlowCal.excel_ui.process_samples_table(samples_table, instruments_table, mef_transform_fxns=None, beads_table=None, base_dir='.', verbose=False, plot=False, plot_dir=None)

	Process flow cytometry samples, as specified by an input table.

The function processes each entry in samples_table, and does the
following:

	Load the FCS file specified in the field “File Path”.

	Transform the forward scatter/side scatter to RFI.

	Transform the fluorescence channels to the units specified in the
column “<Channel name> Units”.

	Remove the 250 first and 100 last events.

	Remove saturated events in the forward scatter and side scatter
channels.

	Apply density gating on the forward scatter/side scatter
channels.

	Plot combined forward/side scatter density plots and fluorescence
historgrams, if plot = True.

Names of forward/side scatter and fluorescence channels are taken from
instruments_table.

	Parameters

	
	samples_tableDataFrame

	Table specifying samples to be processed. For more information
about the fields required in this table, please consult the
module’s documentation.

	instruments_tableDataFrame

	Table specifying instruments. For more information about the fields
required in this table, please consult the module’s documentation.

	mef_transform_fxnsdict or OrderedDict, optional

	Dictionary containing MEF transformation functions. If any entry
in samples_table requires transformation to MEF, a key: value
pair must exist in mef_transform_fxns, with the key being equal to
the contents of field “Beads ID”.

	beads_tableDataFrame, optional

	Table specifying beads samples used to generate
mef_transform_fxns. This is used to check if a beads sample was
taken at the same acquisition settings as a sample to be
transformed to MEF. For any beads sample and channel for which a
MEF transformation function has been generated, the following
fields should be populated: <channel> Amp. Type and
<channel> Detector Volt. If beads_table is not specified, no
checking will be performed.

	base_dirstr, optional

	Directory from where all the other paths are specified.

	verbosebool, optional

	Whether to print information messages during the execution of this
function.

	plotbool, optional

	Whether to generate and save density/histogram plots of each
sample, and each beads sample.

	plot_dirstr, optional

	Directory relative to base_dir into which plots are saved. If
plot is False, this parameter is ignored. If plot==True and
plot_dir is None, plot without saving.

	Returns

	
	samplesOrderedDict

	Processed, gated, and transformed samples, indexed by
samples_table.index.

	
FlowCal.excel_ui.read_table(filename, sheetname, index_col=None, engine=None)

	Return the contents of an Excel table as a pandas DataFrame.

	Parameters

	
	filenamestr

	Name of the Excel file to read.

	sheetnamestr or int

	Name or index of the sheet inside the Excel file to read.

	index_colstr, optional

	Column name or index to be used as row labels of the DataFrame. If
None, default index will be used.

	enginestr, optional

	Engine used by pd.read_excel() to read Excel file. If None, try
‘openpyxl’ then ‘xlrd’.

	Returns

	
	tableDataFrame

	A DataFrame containing the data in the specified Excel table. If
index_col is not None, rows in which their index_col field
is empty will not be present in table.

	Raises

	
	ValueError

	If index_col is specified and two rows contain the same
index_col field.

	
FlowCal.excel_ui.run(input_path=None, output_path=None, verbose=True, plot=True, hist_sheet=False)

	Run the MS Excel User Interface.

This function performs the following:

	If input_path is not specified, show a dialog to choose an input
Excel file.

	Extract data from the Instruments, Beads, and Samples tables.

	Process all the bead samples specified in the Beads table.

	Generate statistics for each bead sample.

	Process all the cell samples in the Samples table.

	Generate statistics for each sample.

	If requested, generate a histogram table for each fluorescent
channel specified for each sample.

	Generate a table with run time, date, FlowCal version, among
others.

	Save statistics and (if requested) histograms in an output Excel
file.

	Parameters

	
	input_pathstr

	Path to the Excel file to use as input. If None, show a dialog to
select an input file.

	output_pathstr

	Path to which to save the output Excel file. If None, use
“<input_path>_output”.

	verbosebool, optional

	Whether to print information messages during the execution of this
function.

	plotbool, optional

	Whether to generate and save density/histogram plots of each
sample, and each beads sample.

	hist_sheetbool, optional

	Whether to generate a sheet in the output Excel file specifying
histogram bin information.

	
FlowCal.excel_ui.run_command_line(args=None)

	Entry point for the FlowCal and flowcal console scripts.

	Parameters

	
	args: list of strings, optional

	Command line arguments. If None or not specified, get arguments
from sys.argv.

See also

	FlowCal.excel_ui.run

	

References

http://amir.rachum.com/blog/2017/07/28/python-entry-points/

	
FlowCal.excel_ui.show_open_file_dialog(filetypes)

	Show an open file dialog and return the path of the file selected.

	Parameters

	
	filetypeslist of tuples

	Types of file to show on the dialog. Each tuple on the list must
have two elements associated with a filetype: the first element is
a description, and the second is the associated extension.

	Returns

	
	filenamestr

	The path of the filename selected, or an empty string if no file
was chosen.

	
FlowCal.excel_ui.write_workbook(filename, table_list, column_width=None)

	Write an Excel workbook from a list of tables.

	Parameters

	
	filenamestr

	Name of the Excel file to write.

	table_listlist of (str, DataFrame) tuples

	Tables to be saved as individual sheets in the Excel table. Each
tuple contains two values: the name of the sheet to be saved as a
string, and the contents of the table as a DataFrame.

	column_width: int or float, optional

	The column width to use when saving the spreadsheet. If None,
calculate width automatically from the maximum number of characters
in each column.

FlowCal.gate module

Functions for gating flow cytometry data.

All gate functions are of the following form:

gated_data = gate(data, channels, *args, **kwargs)

(gated_data, mask, contour, ...) = gate(data, channels, *args,
 **kwargs, full_output=True)

where data is a NxD FCSData object or numpy array describing N cytometry
events with D channels, channels specifies the channels in which to
perform gating, and args and kwargs are gate-specific parameters.
gated_data is the gated result, as an FCSData object or numpy array,
mask is a bool array specifying the gate mask, and contour is an
optional list of 2D numpy arrays containing the x-y coordinates of the
contour surrounding the gated region, which can be used when plotting a 2D
density diagram or scatter plot.

	
class FlowCal.gate.Density2dGateOutput(gated_data, mask, contour, bin_edges, bin_mask)

	Bases: tuple

	Attributes

	
	bin_edges

	Alias for field number 3

	bin_mask

	Alias for field number 4

	contour

	Alias for field number 2

	gated_data

	Alias for field number 0

	mask

	Alias for field number 1

Methods

	count(value, /)

	Return number of occurrences of value.

	index(value[, start, stop])

	Return first index of value.

	
bin_edges

	Alias for field number 3

	
bin_mask

	Alias for field number 4

	
contour

	Alias for field number 2

	
gated_data

	Alias for field number 0

	
mask

	Alias for field number 1

	
class FlowCal.gate.EllipseGateOutput(gated_data, mask, contour)

	Bases: tuple

	Attributes

	
	contour

	Alias for field number 2

	gated_data

	Alias for field number 0

	mask

	Alias for field number 1

Methods

	count(value, /)

	Return number of occurrences of value.

	index(value[, start, stop])

	Return first index of value.

	
contour

	Alias for field number 2

	
gated_data

	Alias for field number 0

	
mask

	Alias for field number 1

	
class FlowCal.gate.HighLowGateOutput(gated_data, mask)

	Bases: tuple

	Attributes

	
	gated_data

	Alias for field number 0

	mask

	Alias for field number 1

Methods

	count(value, /)

	Return number of occurrences of value.

	index(value[, start, stop])

	Return first index of value.

	
gated_data

	Alias for field number 0

	
mask

	Alias for field number 1

	
class FlowCal.gate.StartEndGateOutput(gated_data, mask)

	Bases: tuple

	Attributes

	
	gated_data

	Alias for field number 0

	mask

	Alias for field number 1

Methods

	count(value, /)

	Return number of occurrences of value.

	index(value[, start, stop])

	Return first index of value.

	
gated_data

	Alias for field number 0

	
mask

	Alias for field number 1

	
FlowCal.gate.density2d(data, channels=[0, 1], bins=1024, gate_fraction=0.65, xscale='logicle', yscale='logicle', sigma=10.0, bin_mask=None, full_output=False)

	Gate that preserves events in the region with highest density.

Gate out all events in data but those near regions of highest
density for the two specified channels.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelslist of int, list of str, optional

	Two channels on which to perform gating.

	binsint or array_like or [int, int] or [array, array], optional

	Bins used for gating:

	If None, use data.hist_bins to obtain bin edges for both
axes. None is not allowed if data.hist_bins is not
available.

	If int, bins specifies the number of bins to use for both
axes. If data.hist_bins exists, it will be used to generate
a number bins of bins.

	If array_like, bins directly specifies the bin edges to use
for both axes.

	If [int, int], each element of bins specifies the number of
bins for each axis. If data.hist_bins exists, use it to
generate bins[0] and bins[1] bin edges, respectively.

	If [array, array], each element of bins directly specifies
the bin edges to use for each axis.

	Any combination of the above, such as [int, array], [None,
int], or [array, int]. In this case, None indicates to generate
bin edges using data.hist_bins as above, int indicates the
number of bins to generate, and an array directly indicates the
bin edges. Note that None is not allowed if data.hist_bins
does not exist.

	gate_fractionfloat, optional

	Fraction of events to retain after gating. Should be between 0 and
1, inclusive.

	xscalestr, optional

	Scale of the bins generated for the x axis, either linear,
log, or logicle. xscale is ignored in bins is an array
or a list of arrays.

	yscalestr, optional

	Scale of the bins generated for the y axis, either linear,
log, or logicle. yscale is ignored in bins is an array
or a list of arrays.

	sigmascalar or sequence of scalars, optional

	Standard deviation for Gaussian kernel used by
scipy.ndimage.filters.gaussian_filter to smooth 2D histogram
into a density.

	bin_mask2D numpy array of bool, optional

	A 2D mask array that selects the 2D histogram bins permitted by the
gate. Corresponding bin edges should be specified via bins. If
bin_mask is specified, gate_fraction and sigma are ignored.

	full_outputbool, optional

	Flag specifying to return additional outputs. If true, the outputs
are given as a namedtuple.

	Returns

	
	gated_dataFCSData or numpy array

	Gated flow cytometry data of the same format as data.

	masknumpy array of bool, only if full_output==True

	Boolean gate mask used to gate data such that gated_data =
data[mask].

	contourlist of 2D numpy arrays, only if full_output==True

	List of 2D numpy array(s) of x-y coordinates tracing out the edge of
the gated region. If bin_mask is specified, contour is None.

	bin_edges2-tuple of numpy arrays, only if full_output==True

	X-axis and y-axis bin edges used by the np.histogram2d() command that
bins events (bin_edges=(x_edges,y_edges)).

	bin_mask2D numpy array of bool, only if full_output==True

	A 2D mask array that selects the 2D histogram bins permitted by the
gate.

	Raises

	
	ValueError

	If more or less than 2 channels are specified.

	ValueError

	If data has less than 2 dimensions or less than 2 events.

	Exception

	If an unrecognized matplotlib Path code is encountered when
attempting to generate contours.

Notes

The algorithm for gating based on density works as follows:

	Calculate 2D histogram of data in the specified channels.

	Map each event from data to its histogram bin (implicitly
gating out any events which exist outside specified bins).

	Use gate_fraction to determine number of events to retain
(rounded up). Only events which are not implicitly gated out
are considered.

	Smooth 2D histogram using a 2D Gaussian filter.

	Normalize smoothed histogram to obtain valid probability mass
function (PMF).

	Sort bins by probability.

	Accumulate events (starting with events belonging to bin with
highest probability (“densest”) and proceeding to events
belonging to bins with lowest probability) until at least the
desired number of events is achieved. While the algorithm
attempts to get as close to gate_fraction fraction of events
as possible, more events may be retained based on how many
events fall into each histogram bin (since entire bins are
retained at a time, not individual events).

	
FlowCal.gate.ellipse(data, channels, center, a, b, theta=0, log=False, full_output=False)

	Gate that preserves events inside an ellipse-shaped region.

Events are kept if they satisfy the following relationship:

(x/a)**2 + (y/b)**2 <= 1

where x and y are the coordinates of the event list, after
substracting center and rotating by -theta. This is mathematically
equivalent to maintaining the events inside an ellipse with major
axis a, minor axis b, center at center, and tilted by theta.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelslist of int, list of str

	Two channels on which to perform gating.

	center, a, b, theta (optional)float

	Ellipse parameters. a is the major axis, b is the minor axis.

	logbool, optional

	Flag specifying that log10 transformation should be applied to
data before gating.

	full_outputbool, optional

	Flag specifying to return additional outputs. If true, the outputs
are given as a namedtuple.

	Returns

	
	gated_dataFCSData or numpy array

	Gated flow cytometry data of the same format as data.

	masknumpy array of bool, only if full_output==True

	Boolean gate mask used to gate data such that gated_data =
data[mask].

	contourlist of 2D numpy arrays, only if full_output==True

	List of 2D numpy array(s) of x-y coordinates tracing out
the edge of the gated region.

	Raises

	
	ValueError

	If more or less than 2 channels are specified.

	
FlowCal.gate.high_low(data, channels=None, high=None, low=None, full_output=False)

	Gate out high and low values across all specified channels.

Gate out events in data with values in the specified channels which
are larger than or equal to high or less than or equal to low.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint, str, list of int, list of str, optional

	Channels on which to perform gating. If None, use all channels.

	high, lowint, float, optional

	High and low threshold values. If None, high and low will be
taken from data.range if available, otherwise
np.inf and -np.inf will be used.

	full_outputbool, optional

	Flag specifying to return additional outputs. If true, the outputs
are given as a namedtuple.

	Returns

	
	gated_dataFCSData or numpy array

	Gated flow cytometry data of the same format as data.

	masknumpy array of bool, only if full_output==True

	Boolean gate mask used to gate data such that gated_data =
data[mask].

	
FlowCal.gate.start_end(data, num_start=250, num_end=100, full_output=False)

	Gate out first and last events.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	num_start, num_endint, optional

	Number of events to gate out from beginning and end of data.
Ignored if less than 0.

	full_outputbool, optional

	Flag specifying to return additional outputs. If true, the outputs
are given as a namedtuple.

	Returns

	
	gated_dataFCSData or numpy array

	Gated flow cytometry data of the same format as data.

	masknumpy array of bool, only if full_output==True

	Boolean gate mask used to gate data such that gated_data =
data[mask].

	Raises

	
	ValueError

	If the number of events to discard is greater than the total
number of events in data.

FlowCal.io module

Classes and utiliy functions for reading FCS files.

	
class FlowCal.io.FCSData

	Bases: numpy.ndarray

Object containing events data from a flow cytometry sample.

An FCSData object is an NxD numpy array representing N cytometry
events with D dimensions (channels) extracted from the DATA segment of
an FCS file. Indexing along the second axis can be performed by channel
name, which allows to easily select data from one or several channels.
Otherwise, an FCSData object can be treated as a numpy array for most
purposes.

Information regarding the acquisition date, time, and information about
the detector and the amplifiers are parsed from the TEXT segment of the
FCS file and exposed as attributes. The TEXT and ANALYSIS segments are
also exposed as attributes.

	Parameters

	
	infilestr or file-like

	Reference to the associated FCS file.

Notes

FCSData uses FCSFile to parse an FCS file. All restrictions on the
FCS file format and the Exceptions spcecified for FCSFile also apply
to FCSData.

Parsing of some non-standard files is supported [4].

References

	1

	P.N. Dean, C.B. Bagwell, T. Lindmo, R.F. Murphy, G.C. Salzman,
“Data file standard for flow cytometry. Data File Standards
Committee of the Society for Analytical Cytology,” Cytometry vol
11, pp 323-332, 1990, PMID 2340769.

	2

	L.C. Seamer, C.B. Bagwell, L. Barden, D. Redelman, G.C. Salzman,
J.C. Wood, R.F. Murphy, “Proposed new data file standard for flow
cytometry, version FCS 3.0,” Cytometry vol 28, pp 118-122, 1997,
PMID 9181300.

	3

	J. Spidlen, et al, “Data File Standard for Flow Cytometry,
version FCS 3.1,” Cytometry A vol 77A, pp 97-100, 2009, PMID
19937951.

	4

	R. Hicks, “BD$WORD file header fields,”
https://lists.purdue.edu/pipermail/cytometry/2001-October/020624.html

Examples

Load an FCS file into an FCSData object

>>> import FlowCal
>>> d = FlowCal.io.FCSData('test/Data001.fcs')

Check channel names

>>> print d.channels
('FSC-H', 'SSC-H', 'FL1-H', 'FL2-H', 'FL3-H', 'Time')

Check the size of FCSData

>>> print d.shape
(20949, 6)

Get the first 100 events

>>> d_sub = d[:100]
>>> print d_sub.shape
(100, 6)

Retain only fluorescence channels

>>> d_fl = d[:, ['FL1-H', 'FL2-H', 'FL3-H']]
>>> d_fl.channels
('FL1-H', 'FL2-H', 'FL3-H')

Channel slicing can also be done with integer indices

>>> d_fl_2 = d[:, [2, 3, 4]]
>>> print d_fl_2.channels
('FL1-H', 'FL2-H', 'FL3-H')
>>> import numpy as np
>>> np.all(d_fl == d_fl_2)
True

	Attributes

	
	infilestr or file-like

	Reference to the associated FCS file.

	textdict

	Dictionary of key-value entries from the TEXT segment.

	analysisdict

	Dictionary of key-value entries from the ANALYSIS segment.

	data_typestr

	Type of data in the FCS file’s DATA segment.

	time_stepfloat

	Time step of the time channel.

	acquisition_start_timetime or datetime

	Acquisition start time, as a python time or datetime object.

	acquisition_end_timetime or datetime

	Acquisition end time, as a python time or datetime object.

	acquisition_timefloat

	Acquisition time, in seconds.

	channelstuple

	The name of the channels contained in FCSData.

Methods

	amplification_type([channels])

	Get the amplification type used for the specified channel(s).

	detector_voltage([channels])

	Get the detector voltage used for the specified channel(s).

	amplifier_gain([channels])

	Get the amplifier gain used for the specified channel(s).

	channel_labels([channels])

	Get the label of the specified channel(s).

	range([channels])

	Get the range of the specified channel(s).

	resolution([channels])

	Get the resolution of the specified channel(s).

	hist_bins([channels, nbins, scale])

	Get histogram bin edges for the specified channel(s).

	
acquisition_end_time

	Acquisition end time, as a python time or datetime object.

acquisition_end_time is taken from the $ETIM keyword parameter in
the TEXT segment of the FCS file. If date information is also
found, acquisition_end_time is a datetime object with the
acquisition date. If not, acquisition_end_time is a datetime.time
object. If no end time is found in the FCS file, return None.

	
acquisition_start_time

	Acquisition start time, as a python time or datetime object.

acquisition_start_time is taken from the $BTIM keyword parameter
in the TEXT segment of the FCS file. If date information is also
found, acquisition_start_time is a datetime object with the
acquisition date. If not, acquisition_start_time is a
datetime.time object. If no start time is found in the FCS file,
return None.

	
acquisition_time

	Acquisition time, in seconds.

The acquisition time is calculated using the ‘time’ channel by
default (channel name is case independent). If the ‘time’ channel
is not available, the acquisition_start_time and
acquisition_end_time, extracted from the $BTIM and $ETIM keyword
parameters will be used. If these are not found, None will be
returned.

	
amplification_type(channels=None)

	Get the amplification type used for the specified channel(s).

Each channel uses one of two amplification types: linear or
logarithmic. This function returns, for each channel, a tuple of
two numbers, in which the first number indicates the number of
decades covered by the logarithmic amplifier, and the second
indicates the linear value corresponding to the channel value zero.
If the first value is zero, the amplifier used is linear

The amplification type for channel “n” is extracted from the
required $PnE parameter.

	Parameters

	
	channelsint, str, list of int, list of str

	Channel(s) for which to get the amplification type. If None,
return a list with the amplification type of all channels, in
the order of FCSData.channels.

	
amplifier_gain(channels=None)

	Get the amplifier gain used for the specified channel(s).

The amplifier gain for channel “n” is extracted from the $PnG
parameter, if available.

	Parameters

	
	channelsint, str, list of int, list of str

	Channel(s) for which to get the amplifier gain. If None,
return a list with the amplifier gain of all channels, in the
order of FCSData.channels.

	
analysis

	Dictionary of key-value entries from the ANALYSIS segment.

	
channel_labels(channels=None)

	Get the label of the specified channel(s).

The label for channel “n” is extracted from the $PnS
parameter, if available.

	Parameters

	
	channelsint, str, list of int, list of str

	Channel(s) for which to get the label. If None,
return a list with the label of all channels, in the
order of FCSData.channels.

	
channels

	The name of the channels contained in FCSData.

	
data_type

	Type of data in the FCS file’s DATA segment.

data_type is ‘I’ if the data type is integer, ‘F’ for floating
point, and ‘D’ for double.

	
detector_voltage(channels=None)

	Get the detector voltage used for the specified channel(s).

The detector voltage for channel “n” is extracted from the $PnV
parameter, if available.

	Parameters

	
	channelsint, str, list of int, list of str

	Channel(s) for which to get the detector voltage. If None,
return a list with the detector voltage of all channels, in the
order of FCSData.channels.

	
hist_bins(channels=None, nbins=None, scale='logicle', **kwargs)

	Get histogram bin edges for the specified channel(s).

These cover the range specified in FCSData.range(channels) with
a number of bins nbins, with linear, logarithmic, or logicle
spacing.

	Parameters

	
	channelsint, str, list of int, list of str

	Channel(s) for which to generate histogram bins. If None,
return a list with bins for all channels, in the order of
FCSData.channels.

	nbinsint or list of ints, optional

	The number of bins to calculate. If channels specifies a list
of channels, nbins should be a list of integers. If nbins
is None, use FCSData.resolution(channel).

	scalestr, optional

	Scale in which to generate bins. Can be either linear,
log, or logicle.

	kwargsoptional

	Keyword arguments specific to the selected bin scaling. Linear
and logarithmic scaling do not use additional arguments.
For logicle scaling, the following parameters can be provided:

	Tfloat, optional

	Maximum range of data. If not provided, use range[1].

	Mfloat, optional

	(Asymptotic) number of decades in scaled units. If not
provided, calculate from the following:

max(4.5, 4.5 / np.log10(262144) * np.log10(T))

	Wfloat, optional

	Width of linear range in scaled units. If not provided,
calculate using the following relationship:

W = (M - log10(T / abs(r))) / 2

Where r is the minimum negative event. If no negative
events are present, W is set to zero.

Notes

If range[0] is equal or less than zero and scale is log,
the lower limit of the range is replaced with one.

Logicle scaling uses the LogicleTransform class in the plot module.

References

	1

	D.R. Parks, M. Roederer, W.A. Moore, “A New Logicle Display

Method Avoids Deceptive Effects of Logarithmic Scaling for Low
Signals and Compensated Data,” Cytometry Part A 69A:541-551, 2006,
PMID 16604519.

	
infile

	Reference to the associated FCS file.

	
range(channels=None)

	Get the range of the specified channel(s).

The range is a two-element list specifying the smallest and largest
values that an event in a channel should have. Note that with
floating point data, some events could have values outside the
range in either direction due to instrument compensation.

The range should be transformed along with the data when passed
through a transformation function.

The range of channel “n” is extracted from the $PnR parameter as
[0, $PnR - 1].

	Parameters

	
	channelsint, str, list of int, list of str

	Channel(s) for which to get the range. If None, return a list
with the range of all channels, in the order of
FCSData.channels.

	
resolution(channels=None)

	Get the resolution of the specified channel(s).

The resolution specifies the number of different values that the
events can take. The resolution is directly obtained from the $PnR
parameter.

	Parameters

	
	channelsint, str, list of int, list of str

	Channel(s) for which to get the resolution. If None, return a
list with the resolution of all channels, in the order of
FCSData.channels.

	
text

	Dictionary of key-value entries from the TEXT segment.

text includes items from the TEXT segment and optional
supplemental TEXT segment.

	
time_step

	Time step of the time channel.

The time step is such that self[:,'Time']*time_step is in
seconds. If no time step was found in the FCS file, time_step is
None.

	
class FlowCal.io.FCSFile(infile)

	Bases: object

Class representing an FCS flow cytometry data file.

This class parses a binary FCS file and exposes a read-only view
of the HEADER, TEXT, DATA, and ANALYSIS segments via Python-friendly
data structures.

	Parameters

	
	infilestr or file-like

	Reference to the associated FCS file.

	Raises

	
	NotImplementedError

	If $MODE is not ‘L’.

	NotImplementedError

	If $DATATYPE is not ‘I’, ‘F’, or ‘D’.

	NotImplementedError

	If $DATATYPE is ‘I’ but data is not byte aligned.

	NotImplementedError

	If $BYTEORD is not big endian (‘4,3,2,1’ or ‘2,1’) or little
endian (‘1,2,3,4’, ‘1,2’).

	ValueError

	If primary TEXT segment does not start with delimiter.

	ValueError

	If TEXT-like segment has odd number of total extracted keys and
values (indicating an unpaired key or value).

	ValueError

	If calculated DATA segment size (as determined from the number
of events, the number of parameters, and the number of bytes per
data point) does not match size specified in HEADER segment
offsets.

	Warning

	If more than one data set is detected in the same file.

	Warning

	If the ANALYSIS segment was not successfully parsed.

Notes

The Flow Cytometry Standard (FCS) describes the de facto standard
file format used by flow cytometry acquisition and analysis software
to record flow cytometry data to and load flow cytometry data from a
file. The standard dictates that each file must have the following
segments: HEADER, TEXT, and DATA. The HEADER segment contains
version information and byte offset values of other segments, the
TEXT segment contains delimited key-value pairs containing
acquisition information, and the DATA segment contains the recorded
flow cytometry data. The file may optionally have an ANALYSIS
segment (structurally identicaly to the TEXT segment), a
supplemental TEXT segment (according to more recent versions of the
standard), and user-defined OTHER segments.

This class supports a subset of the FCS3.1 standard which should be
backwards compatible with FCS3.0 and FCS2.0. The FCS file must be
of the following form:

	$MODE = ‘L’ (list mode; histogram mode is not supported).

	$DATATYPE = ‘I’ (unsigned binary integers), ‘F’ (single
precision floating point), or ‘D’ (double precision floating
point). ‘A’ (ASCII) is not supported.

	If $DATATYPE = ‘I’, $PnB % 8 = 0 (byte aligned) for all
parameters (aka channels).

	$BYTEORD = ‘4,3,2,1’ (big endian) or ‘1,2,3,4’ (little
endian).

	One data set per file.

For more information on the TEXT segment keywords (e.g. $MODE,
$DATATYPE, etc.), see [1], [2], and [3].

References

	1

	P.N. Dean, C.B. Bagwell, T. Lindmo, R.F. Murphy, G.C. Salzman,
“Data file standard for flow cytometry. Data File Standards
Committee of the Society for Analytical Cytology,” Cytometry vol
11, pp 323-332, 1990, PMID 2340769.

	2

	L.C. Seamer, C.B. Bagwell, L. Barden, D. Redelman, G.C. Salzman,
J.C. Wood, R.F. Murphy, “Proposed new data file standard for flow
cytometry, version FCS 3.0,” Cytometry vol 28, pp 118-122, 1997,
PMID 9181300.

	3

	J. Spidlen, et al, “Data File Standard for Flow Cytometry,
version FCS 3.1,” Cytometry A vol 77A, pp 97-100, 2009, PMID
19937951.

	Attributes

	
	infilestr or file-like

	Reference to the associated FCS file.

	headernamedtuple

	namedtuple containing version information and byte offset

	textdict

	Dictionary of key-value entries from TEXT segment and optional supplemental TEXT segment.

	datanumpy array

	Unwriteable NxD numpy array describing N cytometry events observing D data dimensions.

	analysisdict

	Dictionary of key-value entries from ANALYSIS segment.

	
analysis

	Dictionary of key-value entries from ANALYSIS segment.

	
data

	Unwriteable NxD numpy array describing N cytometry events
observing D data dimensions.

	
header

	namedtuple containing version information and byte offset
values of other FCS segments in the following order:

	version : str

	text_begin : int

	text_end : int

	data_begin : int

	data_end : int

	analysis_begin : int

	analysis_end : int

	
infile

	Reference to the associated FCS file.

	
text

	Dictionary of key-value entries from TEXT segment and optional
supplemental TEXT segment.

	
FlowCal.io.read_fcs_data_segment(buf, begin, end, datatype, num_events, param_bit_widths, big_endian, param_ranges=None)

	Read DATA segment of FCS file.

	Parameters

	
	buffile-like object

	Buffer containing data to interpret as DATA segment.

	beginint

	Offset (in bytes) to first byte of DATA segment in buf.

	endint

	Offset (in bytes) to last byte of DATA segment in buf.

	datatype{‘I’, ‘F’, ‘D’, ‘A’}

	String specifying FCS file datatype (see $DATATYPE keyword from
FCS standards). Supported datatypes include ‘I’ (unsigned
binary integer), ‘F’ (single precision floating point), and ‘D’
(double precision floating point). ‘A’ (ASCII) is recognized
but not supported.

	num_eventsint

	Total number of events (see $TOT keyword from FCS standards).

	param_bit_widthsarray-like

	Array specifying parameter (aka channel) bit width for each
parameter (see $PnB keywords from FCS standards). The length of
param_bit_widths should match the $PAR keyword value from the
FCS standards (which indicates the total number of parameters).
If datatype is ‘I’, data must be byte aligned (i.e. all
parameter bit widths should be divisible by 8), and data are
upcast to the nearest uint8, uint16, uint32, or uint64 data
type. Bit widths larger than 64 bits are not supported.

	big_endianbool

	Endianness of computer used to acquire data (see $BYTEORD
keyword from FCS standards). True implies big endian; False
implies little endian.

	param_rangesarray-like, optional

	Array specifying parameter (aka channel) range for each
parameter (see $PnR keywords from FCS standards). Used to
ensure erroneous values are not read from DATA segment by
applying a bit mask to remove unused bits. The length of
param_ranges should match the $PAR keyword value from the FCS
standards (which indicates the total number of parameters). If
None, no masking is performed.

	Returns

	
	datanumpy array

	NxD numpy array describing N cytometry events observing D data
dimensions.

	Raises

	
	ValueError

	If lengths of param_bit_widths and param_ranges don’t match.

	ValueError

	If calculated DATA segment size (as determined from the number
of events, the number of parameters, and the number of bytes per
data point) does not match size specified by begin and end.

	ValueError

	If param_bit_widths doesn’t agree with datatype for single
precision or double precision floating point (i.e. they should
all be 32 or 64, respectively).

	ValueError

	If datatype is unrecognized.

	NotImplementedError

	If datatype is ‘A’.

	NotImplementedError

	If datatype is ‘I’ but data is not byte aligned.

References

	1

	P.N. Dean, C.B. Bagwell, T. Lindmo, R.F. Murphy, G.C. Salzman,
“Data file standard for flow cytometry. Data File Standards
Committee of the Society for Analytical Cytology,” Cytometry vol
11, pp 323-332, 1990, PMID 2340769.

	2

	L.C. Seamer, C.B. Bagwell, L. Barden, D. Redelman, G.C. Salzman,
J.C. Wood, R.F. Murphy, “Proposed new data file standard for flow
cytometry, version FCS 3.0,” Cytometry vol 28, pp 118-122, 1997,
PMID 9181300.

	3

	J. Spidlen, et al, “Data File Standard for Flow Cytometry,
version FCS 3.1,” Cytometry A vol 77A, pp 97-100, 2009, PMID
19937951.

	
FlowCal.io.read_fcs_header_segment(buf, begin=0)

	Read HEADER segment of FCS file.

	Parameters

	
	buffile-like object

	Buffer containing data to interpret as HEADER segment.

	beginint

	Offset (in bytes) to first byte of HEADER segment in buf.

	Returns

	
	headernamedtuple

	Version information and byte offset values of other FCS segments
(see FCS standards for more information) in the following order:

	version : str

	text_begin : int

	text_end : int

	data_begin : int

	data_end : int

	analysis_begin : int

	analysis_end : int

Notes

Blank ANALYSIS segment offsets are converted to zeros.

OTHER segment offsets are ignored (see [1], [2], and [3]).

References

	1

	P.N. Dean, C.B. Bagwell, T. Lindmo, R.F. Murphy, G.C. Salzman,
“Data file standard for flow cytometry. Data File Standards
Committee of the Society for Analytical Cytology,” Cytometry vol
11, pp 323-332, 1990, PMID 2340769.

	2

	L.C. Seamer, C.B. Bagwell, L. Barden, D. Redelman, G.C. Salzman,
J.C. Wood, R.F. Murphy, “Proposed new data file standard for flow
cytometry, version FCS 3.0,” Cytometry vol 28, pp 118-122, 1997,
PMID 9181300.

	3

	J. Spidlen, et al, “Data File Standard for Flow Cytometry,
version FCS 3.1,” Cytometry A vol 77A, pp 97-100, 2009, PMID
19937951.

	
FlowCal.io.read_fcs_text_segment(buf, begin, end, delim=None, supplemental=False)

	Read TEXT segment of FCS file.

	Parameters

	
	buffile-like object

	Buffer containing data to interpret as TEXT segment.

	beginint

	Offset (in bytes) to first byte of TEXT segment in buf.

	endint

	Offset (in bytes) to last byte of TEXT segment in buf.

	delimstr, optional

	1-byte delimiter character which delimits key-value entries of
TEXT segment. If None and supplemental==False, will extract
delimiter as first byte of TEXT segment.

	supplementalbool, optional

	Flag specifying that segment is a supplemental TEXT segment (see
FCS3.0 and FCS3.1), in which case a delimiter (delim) must be
specified.

	Returns

	
	textdict

	Dictionary of key-value entries extracted from TEXT segment.

	delimstr or None

	String containing delimiter or None if TEXT segment is empty.

	Raises

	
	ValueError

	If supplemental TEXT segment (supplemental==True) but delim is
not specified.

	ValueError

	If primary TEXT segment (supplemental==False) does not start with
delimiter.

	ValueError

	If first keyword starts with delimiter (e.g. a primary TEXT segment
with the following contents: ///k1/v1/k2/v2/).

	ValueError

	If odd number of keys + values detected (indicating an unpaired key or
value).

	ValueError

	If TEXT segment is ill-formed (unable to be parsed according to the
FCS standards).

Notes

ANALYSIS segments and supplemental TEXT segments are parsed the same way,
so this function can also be used to parse ANALYSIS segments.

This function does not automatically parse and accumulate additional
TEXT-like segments (e.g. supplemental TEXT segments or ANALYSIS segments)
referenced in the originally specified TEXT segment.

References

	1

	P.N. Dean, C.B. Bagwell, T. Lindmo, R.F. Murphy, G.C. Salzman,
“Data file standard for flow cytometry. Data File Standards
Committee of the Society for Analytical Cytology,” Cytometry vol
11, pp 323-332, 1990, PMID 2340769.

	2

	L.C. Seamer, C.B. Bagwell, L. Barden, D. Redelman, G.C. Salzman,
J.C. Wood, R.F. Murphy, “Proposed new data file standard for flow
cytometry, version FCS 3.0,” Cytometry vol 28, pp 118-122, 1997,
PMID 9181300.

	3

	J. Spidlen, et al, “Data File Standard for Flow Cytometry,
version FCS 3.1,” Cytometry A vol 77A, pp 97-100, 2009, PMID
19937951.

FlowCal.mef module

Functions for transforming flow cytometer data to MEF units.

	
FlowCal.mef.clustering_gmm(data, n_clusters, tol=1e-07, min_covar=None, scale='logicle')

	Find clusters in an array using a Gaussian Mixture Model.

Before clustering, data can be automatically rescaled as specified by
the scale argument.

	Parameters

	
	dataFCSData or array_like

	Data to cluster.

	n_clustersint

	Number of clusters to find.

	tolfloat, optional

	Tolerance for convergence. Directly passed to either
GaussianMixture or GMM, depending on scikit-learn’s
version.

	min_covarfloat, optional

	The minimum trace that the initial covariance matrix will have. If
scikit-learn’s version is older than 0.18, min_covar is also
passed directly to GMM.

	scalestr, optional

	Rescaling applied to data before performing clustering. Can be
either linear (no rescaling), log, or logicle.

	Returns

	
	labelsarray

	Nx1 array with labels for each element in data, assigning
data[i] to cluster labels[i].

Notes

A Gaussian Mixture Model finds clusters by fitting a linear combination
of n_clusters Gaussian probability density functions (pdf) to data
using Expectation Maximization (EM).

This method can be fairly sensitive to the initial parameter choice. To
generate a reasonable set of initial conditions, clustering_gmm
first divides all points in data into n_clusters groups of the
same size based on their Euclidean distance to the minimum value. Then,
for each group, the 50% samples farther away from the mean are
discarded. The mean and covariance are calculated from the remaining
samples of each group, and used as initial conditions for the GMM EM
algorithm.

clustering_gmm internally uses a GaussianMixture object from the
scikit-learn library (GMM if scikit-learn’s version is
lower than 0.18), with full covariance matrices for each cluster. For
more information, consult scikit-learn’s documentation.

	
FlowCal.mef.fit_beads_autofluorescence(fl_rfi, fl_mef)

	Fit a standard curve using a beads model with autofluorescence.

	Parameters

	
	fl_rfiarray

	Fluorescence values of bead populations in units of Relative
Fluorescence Intensity (RFI).

	fl_mefarray

	Fluorescence values of bead populations in MEF units.

	Returns

	
	std_crvfunction

	Standard curve that transforms fluorescence values from RFI to MEF
units. This function has the signature y = std_crv(x), where
x is some fluorescence value in RFI and y is the same
fluorescence expressed in MEF units.

	beads_modelfunction

	Fluorescence model of calibration beads. This function has the
signature y = beads_model(x), where x is the fluorescence of
some bead population in RFI units and y is the same fluorescence
expressed in MEF units, without autofluorescence.

	beads_paramsarray

	Fitted parameters of the bead fluorescence model: [m, b,
fl_mef_auto].

	beads_model_strstr

	String representation of the beads model used.

	beads_params_nameslist of str

	Names of the parameters in a list, in the same order as they are
given in beads_params.

Notes

The following model is used to describe bead fluorescence:

m*log(fl_rfi[i]) + b = log(fl_mef_auto + fl_mef[i])

where fl_rfi[i] is the fluorescence of bead subpopulation i in
RFI units and fl_mef[i] is the corresponding fluorescence in MEF
units. The model includes 3 parameters: m (slope), b
(intercept), and fl_mef_auto (bead autofluorescence). The last term
is constrained to be greater or equal to zero.

The bead fluorescence model is fit in log space using nonlinear least
squares regression. In our experience, fitting in log space weights
the residuals more evenly, whereas fitting in linear space vastly
overvalues the brighter beads.

A standard curve is constructed by solving for fl_mef. As cell
samples may not have the same autofluorescence as beads, the bead
autofluorescence term (fl_mef_auto) is omitted from the standard
curve; the user is expected to use an appropriate white cell sample to
account for cellular autofluorescence if necessary. The returned
standard curve mapping fluorescence in RFI units to MEF units is thus
of the following form:

fl_mef = exp(m*log(fl_rfi) + b)

This is equivalent to:

fl_mef = exp(b) * (fl_rfi**m)

This works for positive fl_rfi values, but it is undefined for
fl_rfi < 0 and non-integer m (general case).

To extend this standard curve to negative values of fl_rfi, we
define s(fl_rfi) to be equal to the standard curve above when
fl_rfi >= 0. Next, we require this function to be odd, that is,
s(fl_rfi) = - s(-fl_rfi). This extends the domain to negative
fl_rfi values and results in s(fl_rfi) < 0 for any negative
fl_rfi. Finally, we make fl_mef = s(fl_rfi) our new
standard curve. In this way,:

s(fl_rfi) = exp(b) * (fl_rfi **m), fl_rfi >= 0
 - exp(b) * ((-fl_rfi)**m), fl_rfi < 0

This satisfies the definition of an odd function. In addition,
s(0) = 0, and s(fl_rfi) converges to zero when fl_rfi -> 0
from both sides. Therefore, the function is continuous at
fl_rfi = 0. The definition of s(fl_rfi) can be expressed more
conveniently as:

s(fl_rfi) = sign(fl_rfi) * exp(b) * (abs(fl_rfi)**m)

This is the equation implemented.

	
FlowCal.mef.get_transform_fxn(data_beads, mef_values, mef_channels, clustering_fxn=<function clustering_gmm>, clustering_params={}, clustering_channels=None, statistic_fxn=<function median>, statistic_params={}, selection_fxn=<function selection_std>, selection_params={}, fitting_fxn=<function fit_beads_autofluorescence>, fitting_params={}, verbose=False, plot=False, plot_dir=None, plot_filename=None, full_output=False)

	Get a transformation function to convert flow cytometry data to MEF.

	Parameters

	
	data_beadsFCSData object

	Flow cytometry data describing calibration beads.

	mef_valuessequence of sequences

	Known MEF values for the calibration bead subpopulations, for each
channel specified in mef_channels. The innermost sequences must
have the same length (the same number of bead subpopulations must
exist for each channel). Values of np.nan or None specify that a
subpopulation should be omitted from the fitting procedure.

	mef_channelsint, or str, or list of int, or list of str

	Channels for which to generate transformation functions.

	verbosebool, optional

	Flag specifying whether to print information about step completion
and warnings.

	plotbool, optional

	Flag specifying whether to produce diagnostic plots.

	plot_dirstr, optional

	Directory where to save diagnostics plots. Ignored if plot is
False. If plot==True and plot_dir is None, plot without
saving.

	plot_filenamestr, optional

	Name to use for plot files. If None, use str(data_beads).

	full_outputbool, optional

	Flag specifying whether to include intermediate results in the
output. If full_output is True, the function returns a
MEFOutput namedtuple with fields as described below. If
full_output is False, the function only returns the calculated
transformation function.

	Returns

	
	transform_fxnfunction

	Transformation function to convert flow cytometry data from RFI
units to MEF. This function has the following signature:

data_mef = transform_fxn(data_rfi, channels)

	mef_channelsint, or str, or list, only if full_output==True

	Channels on which the transformation function has been generated.
Directly copied from the mef_channels argument.

	clusteringdict, only if full_output==True

	Results of the clustering step. The structure of this dictionary
is:

clustering = {"labels": np.array}

A description of each "key": value is given below.

	“labels”array

	Array of length N, where N is the number of events in
data_beads. This array contains labels indicating which
subpopulation each event has been assigned to by the clustering
algorithm. Labels range from 0 to M - 1, where M is
the number of MEF values specified, and therefore the number of
subpopulations identified by the clustering algorithm.

	statisticdict, only if full_output==True

	Results of the calculation of bead subpopulations’ fluorescence.
The structure of this dictionary is:

statistic = {"values": [np.array, ...]}

A description of each "key": value is given below.

	“values”list of arrays

	Each array contains the representative fluorescence values of
all subpopulations, for a specific fluorescence channel from
mef_channels. Therefore, each array has a length equal to the
number of subpopulations, and the outer list has as many arrays
as the number of channels in mef_channels.

	selectiondict, only if full_output==True

	Results of the subpopulation selection step. The structure of this
dictionary is:

selection = {"rfi": [np.array, ...],
 "mef": [np.array, ...]}

A description of each "key": value is given below.

	“rfi”list of arrays

	Each array contains the fluorescence values of each selected
subpopulation in RFI units, for a specific fluorescence channel
from mef_channels. The outer list has as many arrays as the
number of channels in mef_channels. Because the selection
step may discard subpopulations, each array has a length less
than or equal to the total number of subpopulations.
Furthermore, different arrays in this list may not have the
same length. However, the length of each array is consistent
with the corresponding array in selection["mef"] (see
below).

	“mef”list of arrays

	Each array contains the fluorescence values of each selected
subpopulation in MEF units, for a specific fluorescence channel
from mef_channels. The outer list has as many arrays as the
number of channels in mef_channels. Because the selection
step may discard subpopulations, each array has a length less
than or equal to the total number of subpopulations.
Furthermore, different arrays in this list may not have the
same length. However, the length of each array is consistent
with the corresponding array in selection["rfi"] (see
above).

	fittingdict, only if full_output==True

	Results of the model fitting step. The structure of this dictionary
is:

selection = {"std_crv": [func, ...],
 "beads_model": [func, ...],
 "beads_params": [np.array, ...],
 "beads_model_str": [str, ...],
 "beads_params_names": [[], ...]}

A description of each "key": value is given below.

	“std_crv”list of functions

	Functions encoding the fitted standard curves, for each channel
in mef_channels. Each element of this list is the std_crv
output of the fitting function (see required signature of the
fitting_fxn optional parameter), after applying it to the
MEF and RFI fluorescence values of a specific channel from
mef_channels .

	“beads_model”list of functions

	Functions encoding the fluorescence model of the calibration
beads, for each channel in mef_channels. Each element of this
list is the beads_model output of the fitting function (see
required signature of the fitting_fxn optional parameter),
after applying it to the MEF and RFI fluorescence values of a
specific channel from mef_channels .

	“beads_params”list of arrays

	Fitted parameter values of the bead fluorescence model, for
each channel in mef_chanels. Each element of this list is the
beads_params output of the fitting function (see required
signature of the fitting_fxn optional parameter), after
applying it to the MEF and RFI fluorescence values of a
specific channel from mef_channels.

	“beads_model_str”list of str

	String representation of the bead models used, for each channel
in mef_channels. Each element of this list is the
beads_model_str output of the fitting function (see
required signature of the fitting_fxn optional parameter),
after applying it to the MEF and RFI fluorescence values of a
specific channel from mef_channels .

	“beads_params_names”list of list

	Names of the parameters given in beads_params, for each
channel in mef_channels. Each element of this list is the
beads_params_names output of the fitting function (see
required signature of the fitting_fxn optional parameter),
after applying it to the MEF and RFI fluorescence values of a
specific channel from mef_channels .

	Other Parameters

	
	clustering_fxnfunction, optional

	Function used for clustering, or identification of subpopulations.
Must have the following signature:

labels = clustering_fxn(data, n_clusters, **clustering_params)

where data is a NxD FCSData object or numpy array, n_clusters
is the expected number of bead subpopulations, and labels is a 1D
numpy array of length N, assigning each event in data to one
subpopulation.

	clustering_paramsdict, optional

	Additional keyword parameters to pass to clustering_fxn.

	clustering_channelslist, optional

	Channels used for clustering. If not specified, use mef_channels.
If more than three channels are specified and plot is True, only
a 3D scatter plot will be produced using the first three channels.

	statistic_fxnfunction, optional

	Function used to calculate the representative fluorescence of each
subpopulation. Must have the following signature:

s = statistic_fxn(data, **statistic_params)

where data is a 1D FCSData object or numpy array, and s is a
float. Statistical functions from numpy, scipy, or FlowCal.stats
are valid options.

	statistic_paramsdict, optional

	Additional keyword parameters to pass to statistic_fxn.

	selection_fxnfunction, optional

	Function to use for bead population selection. Must have the
following signature:

selected_mask = selection_fxn(data_list, **selection_params)

where data_list is a list of FCSData objects, each one containing
the events of one population, and selected_mask is a boolean
array indicating whether the population has been selected (True) or
discarded (False). If None, don’t use a population selection
procedure.

	selection_paramsdict, optional

	Additional keyword parameters to pass to selection_fxn.

	fitting_fxnfunction, optional

	Function used to fit the beads fluorescence model and obtain a
standard curve. Must have the following signature:

std_crv, beads_model, beads_params, \
beads_model_str, beads_params_names = fitting_fxn(
 fl_rfi, fl_mef, **fitting_params)

where std_crv is a function implementing the standard curve,
beads_model is a function implementing the beads fluorescence
model, beads_params is an array containing the fitted parameters
of the beads model, beads_model_str is a string representation
of the beads model used, beads_params_names is a list with the
parameter names in the same order as they are given in
beads_params, and fl_rfi and fl_mef are the fluorescence
values of the beads in RFI units and MEF units, respectively.
Note that the standard curve and the fitted beads model are not
necessarily the same.

	fitting_paramsdict, optional

	Additional keyword parameters to pass to fitting_fxn.

Notes

The steps involved in generating the MEF transformation function are:

	The individual subpopulations of beads are first identified using a
clustering method of choice. Clustering is performed in all
specified channels simultaneously.

	The fluorescence of each subpopulation is calculated, for each
channel in mef_channels.

	Some subpopulations are then discarded if they are close to either
the minimum or the maximum channel range limits. In addition, if the
MEF value of some subpopulation is unknown (represented as a
np.nan in mef_values), the whole subpopulation is also
discarded.

	The measured fluorescence of each subpopulation is compared with
the known MEF values in mef_values, and a standard curve function
is generated using the appropriate MEF model.

At the end, a transformation function is generated using the calculated
standard curves, mef_channels, and FlowCal.transform.to_mef().

Note that applying the resulting transformation function to other
flow cytometry samples only yields correct results if they have been
taken at the same settings as the calibration beads, for all channels
in mef_channels.

Examples

Here is a simple application of this function:

>>> transform_fxn = FlowCal.mef.get_transform_fxn(
... beads_data,
... mef_channels=['FL1', 'FL3'],
... mef_values=[np.array([0, 646, 1704, 4827,
... 15991, 47609, 135896, 273006],
... np.array([0, 1614, 4035, 12025,
... 31896, 95682, 353225, 1077421]],
...)
>>> sample_mef = transform_fxn(data=sample_rfi,
... channels=['FL1', 'FL3'])

Here, we first generate transform_fxn from flow cytometry data
contained in FCSData object beads_data, for channels FL1 and
FL3, using provided MEF values for each one of these channels. In the
next line, we use the resulting transformation function to transform
cell sample data in RFI to MEF.

More data about intermediate steps can be obtained with the option
full_output=True:

>>> get_transform_output = FlowCal.mef.get_transform_fxn(
... beads_data,
... mef_channels=['FL1', 'FL3'],
... mef_values=[np.array([0, 646, 1704, 4827,
... 15991, 47609, 135896, 273006],
... np.array([0, 1614, 4035, 12025,
... 31896, 95682, 353225, 1077421]],
... full_output=True)

In this case, the output get_transform_output will be a
MEFOutput namedtuple similar to the following:

FlowCal.mef.MEFOutput(
 transform_fxn=<functools.partial object>,
 mef_channels=['FL1', 'FL3'],
 clustering={
 'labels' : [7, 2, 2, ... 4, 3, 5]
 },
 statistic={
 'values' : [np.array([101, 150, 231, 433,
 1241, 3106, 7774, 9306]),
 np.array([3, 30, 71, 204,
 704, 2054, 6732, 9912])]
 },
 selection={
 'rfi' : [np.array([101, 150, 231, 433,
 1241, 3106, 7774]),
 np.array([30, 71, 204, 704,
 2054, 6732])]
 'mef' : [np.array([0, 646, 1704, 4827,
 15991, 47609, 135896]),
 np.array([1614, 4035, 12025, 31896,
 95682, 353225])]
 },
 fitting={
 'std_crv' : [<function <lambda>>,
 <function <lambda>>]
 'beads_model' : [<function <lambda>>,
 <function <lambda>>]
 'beads_params' : [np.array([1.09e0, 2.02e0, 1.15e3]),
 np.array([9.66e-1, 4.17e0, 6.63e1])]
 'beads_model_str' : ['m*log(fl_rfi) + b = log(fl_mef_auto + fl_mef)',
 'm*log(fl_rfi) + b = log(fl_mef_auto + fl_mef)']
 'beads_params_names' : [['m', 'b', 'fl_mef_auto],
 ['m', 'b', 'fl_mef_auto]]
 },
)

	
FlowCal.mef.plot_standard_curve(fl_rfi, fl_mef, beads_model, std_crv, xscale='linear', yscale='linear', xlim=None, ylim=(1.0, 100000000.0))

	Plot a standard curve with fluorescence of calibration beads.

	Parameters

	
	fl_rfiarray_like

	Fluorescence of the calibration beads’ subpopulations, in RFI
units.

	fl_mefarray_like

	Fluorescence of the calibration beads’ subpopulations, in MEF
units.

	beads_modelfunction

	Fluorescence model of the calibration beads.

	std_crvfunction

	The standard curve, mapping relative fluorescence (RFI) units to
MEF units.

	Other Parameters

	
	xscalestr, optional

	Scale of the x axis, either linear or log.

	yscalestr, optional

	Scale of the y axis, either linear or log.

	xlimtuple, optional

	Limits for the x axis.

	ylimtuple, optional

	Limits for the y axis.

	
FlowCal.mef.selection_std(populations, low=None, high=None, n_std_low=2.5, n_std_high=2.5, scale='logicle')

	Select populations if most of their elements are between two values.

This function selects populations from populations if their means are
more than n_std_low standard deviations greater than low and
n_std_high standard deviations lower than high.

Optionally, all elements in populations can be rescaled as specified
by the scale argument before calculating means and standard
deviations.

	Parameters

	
	populationslist of 1D arrays or 1-channel FCSData objects

	Populations to select or discard.

	low, highint or float

	Low and high thresholds. Required if the elements in populations
are numpy arrays. If not specified, and the elements in
populations are FCSData objects, use 1.5% and 98.5% of the range
in populations[0].range.

	n_std_low, n_std_highfloat, optional

	Number of standard deviations from low and high, respectively,
that a population’s mean has to be closer than to be discarded.

	scalestr, optional

	Rescaling applied to populations before calculating means and
standard deviations. Can be either linear (no rescaling),
log, or logicle.

	Returns

	
	selected_maskboolean array

	Flags indicating whether a population has been selected.

FlowCal.plot module

Functions for visualizing flow cytometry data.

Functions in this module are divided in two categories:

	Simple Plot Functions, with a signature similar to the following:

plot_fxn(data_list, channels, parameters, savefig)

where data_list is a NxD FCSData object or numpy array, or a list of
such, channels specifies the channel or channels to use for the plot,
parameters are function-specific parameters, and savefig indicates
whether to save the figure to an image file. Note that hist1d, violin,
and violin_dose_response use channel instead of channels, since they
use a single channel, and density2d only accepts one FCSData object or
numpy array as its first argument.

Simple Plot Functions do not create a new figure or axis, so they can be
called directly to plot in a previously created axis if desired. If
savefig is not specified, the plot is maintained in the current axis
when the function returns. This allows for further modifications to the
axis by direct calls to, for example, plt.xlabel, plt.title, etc.
However, if savefig is specified, the figure is closed after being
saved. In this case, the function may include keyword parameters
xlabel, ylabel, xlim, ylim, title, and others related to
legend or color, which allow the user to modify the axis prior to saving.

The following functions in this module are Simple Plot Functions:

	hist1d

	violin

	violin_dose_response

	density2d

	scatter2d

	scatter3d

	Complex Plot Functions, which create a figure with several axes, and use
one or more Simple Plot functions to populate the axes. They always
include a savefig argument, which indicates whether to save the figure
to a file. If savefig is not specified, the plot is maintained in the
newly created figure when the function returns. However, if savefig is
specified, the figure is closed after being saved.

The following functions in this module are Complex Plot Functions:

	density_and_hist

	scatter3d_and_projections

	
FlowCal.plot.density2d(data, channels=[0, 1], bins=1024, mode='mesh', normed=False, smooth=True, sigma=10.0, colorbar=False, xscale='logicle', yscale='logicle', xlabel=None, ylabel=None, xlim=None, ylim=None, title=None, savefig=None, **kwargs)

	Plot a 2D density plot from two channels of a flow cytometry data set.

density2d has two plotting modes which are selected using the mode
argument. With mode=='mesh', this function plots the data as a true
2D histogram, in which a plane is divided into bins and the color of
each bin is directly related to the number of elements therein. With
mode=='scatter', this function also calculates a 2D histogram,
but it plots a 2D scatter plot in which each dot corresponds to a bin,
colored according to the number elements therein. The most important
difference is that the scatter mode does not color regions
corresponding to empty bins. This allows for easy identification of
regions with low number of events. For both modes, the calculated
histogram can be smoothed using a Gaussian kernel by specifying
smooth=True. The width of the kernel is, in this case, given by
sigma.

	Parameters

	
	dataFCSData or numpy array

	Flow cytometry data to plot.

	channelslist of int, list of str, optional

	Two channels to use for the plot.

	binsint or array_like or [int, int] or [array, array], optional

	Bins used for plotting:

	If None, use data.hist_bins to obtain bin edges for both
axes. None is not allowed if data.hist_bins is not
available.

	If int, bins specifies the number of bins to use for both
axes. If data.hist_bins exists, it will be used to generate
a number bins of bins.

	If array_like, bins directly specifies the bin edges to use
for both axes.

	If [int, int], each element of bins specifies the number of
bins for each axis. If data.hist_bins exists, use it to
generate bins[0] and bins[1] bin edges, respectively.

	If [array, array], each element of bins directly specifies
the bin edges to use for each axis.

	Any combination of the above, such as [int, array], [None,
int], or [array, int]. In this case, None indicates to generate
bin edges using data.hist_bins as above, int indicates the
number of bins to generate, and an array directly indicates the
bin edges. Note that None is not allowed if data.hist_bins
does not exist.

	mode{‘mesh’, ‘scatter’}, str, optional

	Plotting mode. ‘mesh’ produces a 2D-histogram whereas ‘scatter’
produces a scatterplot colored by histogram bin value.

	normedbool, optional

	Flag indicating whether to plot a normed histogram (probability
mass function instead of a counts-based histogram).

	smoothbool, optional

	Flag indicating whether to apply Gaussian smoothing to the
histogram.

	colorbarbool, optional

	Flag indicating whether to add a colorbar to the plot.

	savefigstr, optional

	The name of the file to save the figure to. If None, do not save.

	Other Parameters

	
	sigmafloat, optional

	The sigma parameter for the Gaussian kernel to use when smoothing.

	xscalestr, optional

	Scale of the x axis, either linear, log, or logicle.

	yscalestr, optional

	Scale of the y axis, either linear, log, or logicle

	xlabelstr, optional

	Label to use on the x axis. If None, attempts to extract channel
name from data.

	ylabelstr, optional

	Label to use on the y axis. If None, attempts to extract channel
name from data.

	xlimtuple, optional

	Limits for the x axis. If not specified and bins exists, use
the lowest and highest values of bins.

	ylimtuple, optional

	Limits for the y axis. If not specified and bins exists, use
the lowest and highest values of bins.

	titlestr, optional

	Plot title.

	kwargsdict, optional

	Additional parameters passed directly to the underlying matplotlib
functions: plt.scatter if mode==scatter, and
plt.pcolormesh if mode==mesh.

	
FlowCal.plot.density_and_hist(data, gated_data=None, gate_contour=None, density_channels=None, density_params={}, hist_channels=None, hist_params={}, figsize=None, savefig=None)

	Make a combined density/histogram plot of a FCSData object.

This function calls hist1d and density2d to plot a density diagram
and a number of histograms in different subplots of the same plot using
one single function call. Setting density_channels to None will not
produce a density diagram, and setting hist_channels to None will not
produce any histograms. Setting both to None will raise an error.
Additional parameters can be provided to density2d and hist1d by
using density_params and hist_params.

If gated_data is provided, this function will plot the histograms
corresponding to gated_data on top of data’s histograms, with some
transparency on data. In addition, a legend will be added with the
labels ‘Ungated’ and ‘Gated’. If gate_contour is provided and it
contains a valid list of 2D curves, these will be plotted on top of the
density plot.

	Parameters

	
	dataFCSData object

	Flow cytometry data object to plot.

	gated_dataFCSData object, optional

	Flow cytometry data object. If gated_data is specified, the
histograms of data are plotted with an alpha value of 0.5, and
the histograms of gated_data are plotted on top of those with
an alpha value of 1.0.

	gate_contourlist, optional

	List of Nx2 curves, representing a gate contour to be plotted in
the density diagram.

	density_channelslist

	Two channels to use for the density plot. If density_channels is
None, do not plot a density plot.

	density_paramsdict, optional

	Parameters to pass to density2d.

	hist_channelslist

	Channels to use for each histogram. If hist_channels is None,
do not plot histograms.

	hist_paramslist, optional

	List of dictionaries with the parameters to pass to each call of
hist1d.

	savefigstr, optional

	The name of the file to save the figure to. If None, do not save.

	Other Parameters

	
	figsizetuple, optional

	Figure size. If None, calculate a default based on the number of
subplots.

	Raises

	
	ValueError

	If both density_channels and hist_channels are None.

	
FlowCal.plot.hist1d(data_list, channel=0, xscale='logicle', bins=256, histtype='stepfilled', normed_area=False, normed_height=False, xlabel=None, ylabel=None, xlim=None, ylim=None, title=None, legend=False, legend_loc='best', legend_fontsize='medium', legend_labels=None, facecolor=None, edgecolor=None, savefig=None, **kwargs)

	Plot one 1D histogram from one or more flow cytometry data sets.

	Parameters

	
	data_listFCSData or numpy array or list of FCSData or numpy array

	Flow cytometry data to plot.

	channelint or str, optional

	Channel from where to take the events to plot. If ndim == 1,
channel is ignored. String channel specifications are only
supported for data types which support string-based indexing
(e.g. FCSData).

	xscalestr, optional

	Scale of the x axis, either linear, log, or logicle.

	binsint or array_like, optional

	If bins is an integer, it specifies the number of bins to use.
If bins is an array, it specifies the bin edges to use. If bins
is None or an integer, hist1d will attempt to use
data.hist_bins to generate the bins automatically.

	histtype{‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’}, str, optional

	Histogram type. Directly passed to plt.hist.

	normed_areabool, optional

	Flag indicating whether to normalize the histogram such that the
area under the curve is equal to one. The resulting plot is
equivalent to a probability density function.

	normed_heightbool, optional

	Flag indicating whether to normalize the histogram such that the
sum of all bins’ heights is equal to one. The resulting plot is
equivalent to a probability mass function. normed_height is
ignored if normed_area is True.

	savefigstr, optional

	The name of the file to save the figure to. If None, do not save.

	Other Parameters

	
	xlabelstr, optional

	Label to use on the x axis. If None, attempts to extract channel
name from last data object.

	ylabelstr, optional

	Label to use on the y axis. If None and normed_area==True, use
‘Probability’. If None, normed_area==False, and
normed_height==True, use ‘Counts (normalized)’. If None,
normed_area==False, and normed_height==False, use ‘Counts’.

	xlimtuple, optional

	Limits for the x axis. If not specified and bins exists, use
the lowest and highest values of bins.

	ylimtuple, optional

	Limits for the y axis.

	titlestr, optional

	Plot title.

	legendbool, optional

	Flag specifying whether to include a legend. If legend is True,
the legend labels will be taken from legend_labels if present,
else they will be taken from str(data_list[i]).

	legend_locstr, optional

	Location of the legend.

	legend_fontsizeint or str, optional

	Font size for the legend.

	legend_labelslist, optional

	Labels to use for the legend.

	facecolormatplotlib color or list of matplotlib colors, optional

	The histogram’s facecolor. It can be a list with the same length as
data_list. If edgecolor and facecolor are not specified, and
histtype == 'stepfilled', the facecolor will be taken from the
module-level variable cmap_default.

	edgecolormatplotlib color or list of matplotlib colors, optional

	The histogram’s edgecolor. It can be a list with the same length as
data_list. If edgecolor and facecolor are not specified, and
histtype == 'step', the edgecolor will be taken from the
module-level variable cmap_default.

	kwargsdict, optional

	Additional parameters passed directly to matploblib’s hist.

Notes

hist1d calls matplotlib’s hist function for each object in
data_list. hist_type, the type of histogram to draw, is directly
passed to plt.hist. Additional keyword arguments provided to
hist1d are passed directly to plt.hist.

If normed_area is set to True, hist1d calls plt.hist with
density (or normed, if matplotlib’s version is older than
2.2.0) set to True. There is a bug in matplotlib 2.1.0 that
produces an incorrect plot in these conditions. We do not recommend
using matplotlib 2.1.0 if normed_area is expected to be used.

	
FlowCal.plot.scatter2d(data_list, channels=[0, 1], xscale='logicle', yscale='logicle', xlabel=None, ylabel=None, xlim=None, ylim=None, title=None, color=None, savefig=None, **kwargs)

	Plot 2D scatter plot from one or more FCSData objects or numpy arrays.

	Parameters

	
	data_listarray or FCSData or list of array or list of FCSData

	Flow cytometry data to plot.

	channelslist of int, list of str

	Two channels to use for the plot.

	savefigstr, optional

	The name of the file to save the figure to. If None, do not save.

	Other Parameters

	
	xscalestr, optional

	Scale of the x axis, either linear, log, or logicle.

	yscalestr, optional

	Scale of the y axis, either linear, log, or logicle.

	xlabelstr, optional

	Label to use on the x axis. If None, attempts to extract channel
name from last data object.

	ylabelstr, optional

	Label to use on the y axis. If None, attempts to extract channel
name from last data object.

	xlimtuple, optional

	Limits for the x axis. If None, attempts to extract limits from the
range of the last data object.

	ylimtuple, optional

	Limits for the y axis. If None, attempts to extract limits from the
range of the last data object.

	titlestr, optional

	Plot title.

	colormatplotlib color or list of matplotlib colors, optional

	Color for the scatter plot. It can be a list with the same length
as data_list. If color is not specified, elements from
data_list are plotted with colors taken from the module-level
variable cmap_default.

	kwargsdict, optional

	Additional parameters passed directly to matploblib’s scatter.

Notes

scatter2d calls matplotlib’s scatter function for each object in
data_list. Additional keyword arguments provided to scatter2d are
passed directly to plt.scatter.

	
FlowCal.plot.scatter3d(data_list, channels=[0, 1, 2], xscale='logicle', yscale='logicle', zscale='logicle', xlabel=None, ylabel=None, zlabel=None, xlim=None, ylim=None, zlim=None, title=None, color=None, savefig=None, **kwargs)

	Plot 3D scatter plot from one or more FCSData objects or numpy arrays.

	Parameters

	
	data_listarray or FCSData or list of array or list of FCSData

	Flow cytometry data to plot.

	channelslist of int, list of str

	Three channels to use for the plot.

	savefigstr, optional

	The name of the file to save the figure to. If None, do not save.

	Other Parameters

	
	xscalestr, optional

	Scale of the x axis, either linear, log, or logicle.

	yscalestr, optional

	Scale of the y axis, either linear, log, or logicle.

	zscalestr, optional

	Scale of the z axis, either linear, log, or logicle.

	xlabelstr, optional

	Label to use on the x axis. If None, attempts to extract channel
name from last data object.

	ylabelstr, optional

	Label to use on the y axis. If None, attempts to extract channel
name from last data object.

	zlabelstr, optional

	Label to use on the z axis. If None, attempts to extract channel
name from last data object.

	xlimtuple, optional

	Limits for the x axis. If None, attempts to extract limits from the
range of the last data object.

	ylimtuple, optional

	Limits for the y axis. If None, attempts to extract limits from the
range of the last data object.

	zlimtuple, optional

	Limits for the z axis. If None, attempts to extract limits from the
range of the last data object.

	titlestr, optional

	Plot title.

	colormatplotlib color or list of matplotlib colors, optional

	Color for the scatter plot. It can be a list with the same length
as data_list. If color is not specified, elements from
data_list are plotted with colors taken from the module-level
variable cmap_default.

	kwargsdict, optional

	Additional parameters passed directly to matploblib’s scatter.

Notes

scatter3d uses matplotlib’s scatter with a 3D projection.
Additional keyword arguments provided to scatter3d are passed
directly to scatter.

	
FlowCal.plot.scatter3d_and_projections(data_list, channels=[0, 1, 2], xscale='logicle', yscale='logicle', zscale='logicle', xlabel=None, ylabel=None, zlabel=None, xlim=None, ylim=None, zlim=None, color=None, figsize=None, savefig=None, **kwargs)

	Plot a 3D scatter plot and 2D projections from FCSData objects.

scatter3d_and_projections creates a 3D scatter plot and three 2D
projected scatter plots in four different axes for each FCSData object
in data_list, in the same figure.

	Parameters

	
	data_listFCSData object, or list of FCSData objects

	Flow cytometry data to plot.

	channelslist of int, list of str

	Three channels to use for the plot.

	savefigstr, optional

	The name of the file to save the figure to. If None, do not save.

	Other Parameters

	
	xscalestr, optional

	Scale of the x axis, either linear, log, or logicle.

	yscalestr, optional

	Scale of the y axis, either linear, log, or logicle.

	zscalestr, optional

	Scale of the z axis, either linear, log, or logicle.

	xlabelstr, optional

	Label to use on the x axis. If None, attempts to extract channel
name from last data object.

	ylabelstr, optional

	Label to use on the y axis. If None, attempts to extract channel
name from last data object.

	zlabelstr, optional

	Label to use on the z axis. If None, attempts to extract channel
name from last data object.

	xlimtuple, optional

	Limits for the x axis. If None, attempts to extract limits from the
range of the last data object.

	ylimtuple, optional

	Limits for the y axis. If None, attempts to extract limits from the
range of the last data object.

	zlimtuple, optional

	Limits for the z axis. If None, attempts to extract limits from the
range of the last data object.

	colormatplotlib color or list of matplotlib colors, optional

	Color for the scatter plot. It can be a list with the same length
as data_list. If color is not specified, elements from
data_list are plotted with colors taken from the module-level
variable cmap_default.

	figsizetuple, optional

	Figure size. If None, use matplotlib’s default.

	kwargsdict, optional

	Additional parameters passed directly to matploblib’s scatter.

Notes

scatter3d_and_projections uses matplotlib’s scatter, with the 3D
scatter plot using a 3D projection. Additional keyword arguments
provided to scatter3d_and_projections are passed directly to
scatter.

	
FlowCal.plot.violin(data, channel=None, positions=None, violin_width=None, xscale=None, yscale=None, xlim=None, ylim=None, vert=True, num_bins=100, bin_edges=None, density=False, upper_trim_fraction=0.01, lower_trim_fraction=0.01, violin_width_to_span_fraction=0.1, violin_kwargs=None, draw_summary_stat=True, draw_summary_stat_fxn=<function mean>, draw_summary_stat_kwargs=None, log_zero_tick_label=None, draw_log_zero_divider=True, draw_log_zero_divider_kwargs=None, xlabel=None, ylabel=None, title=None, savefig=None)

	Plot violin plot.

Illustrate the relative frequency of members of different populations
using normalized, symmetrical histograms (“violins”) centered at
corresponding positions. Wider regions of violins indicate regions that
occur with greater frequency.

	Parameters

	
	data1D or ND array or list of 1D or ND arrays

	A population or collection of populations for which to plot violins.
If ND arrays are used (e.g., FCSData), channel must be specified.

	channelint or str, optional

	Channel from data to plot. If specified, data are assumed to be ND
arrays. String channel specifications are only supported for data
types that support string-based indexing (e.g., FCSData).

	positionsscalar or array, optional

	Positions at which to center violins.

	violin_widthscalar, optional

	Width of violin. If the scale of the position axis (xscale if vert
is True, yscale if vert is False) is log, the units are
decades. If not specified, violin_width is calculated from the
limits of the position axis (xlim if vert is True, ylim if
vert is False) and violin_width_to_span_fraction. If only one
violin is specified in data, violin_width = 0.5.

	savefigstr, optional

	The name of the file to save the figure to. If None, do not save.

	Other Parameters

	
	xscale{‘linear’, ‘log’, ‘logicle’}, optional

	Scale of the x-axis. logicle is only supported for horizontal
violin plots (i.e., when vert is False). Default is linear if
vert is True, logicle if vert is False.

	yscale{‘logicle’, ‘linear’, ‘log’}, optional

	Scale of the y-axis. If vert is False, logicle is not
supported. Default is logicle if vert is True, linear if
vert is False.

	xlim, ylimtuple, optional

	Limits of the x-axis and y-axis views. If not specified, the view of
the position axis (xlim if vert is True, ylim if vert if
False) is calculated to pad the extreme violins with
0.5 * violin_width. If violin_width is also not specified,
violin_width is calculated to satisfy the 0.5 * violin_width
padding and violin_width_to_span_fraction. If not specified, the
view of the data axis (ylim if vert is True, xlim if vert is
False) is calculated to span all violins (before they are
aesthetically trimmed).

	vertbool, optional

	Flag specifying to illustrate a vertical violin plot. If False, a
horizontal violin plot is illustrated.

	num_binsint, optional

	Number of bins to bin population members. Ignored if bin_edges is
specified.

	bin_edgesarray or list of arrays, optional

	Bin edges used to bin population members. Bin edges can be specified
for individual violins using a list of arrays of the same length as
data. If not specified, bin_edges is calculated to span the data
axis (ylim if vert is True, xlim if vert is False) logicly,
linearly, or logarithmically (based on the scale of the data axis;
yscale if vert is True, xscale if vert is False) using
num_bins.

	densitybool, optional

	density parameter passed to the np.histogram() command that bins
population members for each violin. If True, violin width represents
relative frequency density instead of relative frequency (i.e., bins
are normalized by their width).

	upper_trim_fractionfloat or list of floats, optional

	Fraction of members to trim (discard) from the top of the violin
(e.g., for aesthetic purposes). Upper trim fractions can be specified
for individual violins using a list of floats of the same length as
data.

	lower_trim_fractionfloat or list of floats, optional

	Fraction of members to trim (discard) from the bottom of the violin
(e.g., for aesthetic purposes). Lower trim fractions can be specified
for individual violins using a list of floats of the same length as
data.

	violin_width_to_span_fractionfloat, optional

	Fraction of the position axis span (xlim if vert is True, ylim
if vert is False) that a violin should span. Ignored if
violin_width is specified.

	violin_kwargsdict or list of dicts, optional

	Keyword arguments passed to the plt.fill_between() command that
illustrates each violin. Keyword arguments can be specified for
individual violins using a list of dicts of the same length as data.
Default = {‘facecolor’:’gray’, ‘edgecolor’:’black’}.

	draw_summary_statbool, optional

	Flag specifying to illustrate a summary statistic for each violin.

	draw_summary_stat_fxnfunction, optional

	Function used to calculate the summary statistic for each violin.
Summary statistics are calculated prior to aesthetic trimming.

	draw_summary_stat_kwargsdict or list of dicts, optional

	Keyword arguments passed to the plt.plot() command that
illustrates each violin’s summary statistic. Keyword arguments can be
specified for individual violins using a list of dicts of the same
length as data. Default = {‘color’:’black’}.

	log_zero_tick_labelstr, optional

	Label of position=0 violin tick if the position axis scale (xscale
if vert is True, yscale if vert is False) is log. Default
is generated by the default log tick formatter
(matplotlib.ticker.LogFormatterSciNotation) with x=0.

	draw_log_zero_dividerbool, optional

	Flag specifying to illustrate a line separating the position=0 violin
from the other violins if the position axis scale (xscale if vert
is True, yscale if vert is False) is log.

	draw_log_zero_divider_kwargsdict, optional

	Keyword arguments passed to the plt.axvline() or plt.axhline()
command that illustrates the position=0 violin divider. Default =
{‘color’:’gray’,’linestyle’:’:’}.

	xlabel, ylabelstr, optional

	Labels to use on the x and y axes. If a label for the data axis is not
specified (ylabel if vert is True, xlabel if vert is False),
the channel name will be used if possible (extracted from the last
data object).

	titlestr, optional

	Plot title.

	
FlowCal.plot.violin_dose_response(data, channel=None, positions=None, min_data=None, max_data=None, violin_width=None, model_fxn=None, xscale='linear', yscale='logicle', xlim=None, ylim=None, violin_width_to_span_fraction=0.1, num_bins=100, bin_edges=None, density=False, upper_trim_fraction=0.01, lower_trim_fraction=0.01, violin_kwargs=None, draw_summary_stat=True, draw_summary_stat_fxn=<function mean>, draw_summary_stat_kwargs=None, log_zero_tick_label=None, min_bin_edges=None, min_upper_trim_fraction=0.01, min_lower_trim_fraction=0.01, min_violin_kwargs=None, min_draw_summary_stat_kwargs=None, draw_min_line=True, draw_min_line_kwargs=None, min_tick_label='Min', max_bin_edges=None, max_upper_trim_fraction=0.01, max_lower_trim_fraction=0.01, max_violin_kwargs=None, max_draw_summary_stat_kwargs=None, draw_max_line=True, draw_max_line_kwargs=None, max_tick_label='Max', draw_model_kwargs=None, draw_log_zero_divider=True, draw_log_zero_divider_kwargs=None, draw_minmax_divider=True, draw_minmax_divider_kwargs=None, xlabel=None, ylabel=None, title=None, savefig=None)

	Plot violin plot with min data, max data, and mathematical model.

Plot a violin plot (see FlowCal.plot.violin() description) with
vertical violins and separately illustrate a min violin, a max violin, and
a mathematical model. Useful for illustrating “dose response” or “transfer”
functions, which benefit from the added context of minimum and maximum
bounds and which are often described by mathematical models. Min and max
violins are illustrated to the left of the plot, and the mathematical
model is correctly illustrated even when a position=0 violin is
illustrated separately when xscale is log.

	Parameters

	
	data1D or ND array or list of 1D or ND arrays

	A population or collection of populations for which to plot violins.
If ND arrays are used (e.g., FCSData), channel must be specified.

	channelint or str, optional

	Channel from data to plot. If specified, data are assumed to be ND
arrays. String channel specifications are only supported for data
types that support string-based indexing (e.g., FCSData).

	positionsscalar or array, optional

	Positions at which to center violins.

	min_data1D or ND array, optional

	A population representing a minimum control. This violin is separately
illustrated at the left of the plot.

	max_data1D or ND array, optional

	A population representing a maximum control. This violin is separately
illustrated at the left of the plot.

	violin_widthscalar, optional

	Width of violin. If xscale is log, the units are decades. If not
specified, violin_width is calculated from xlim and
violin_width_to_span_fraction. If only one violin is specified in
data, violin_width = 0.5.

	model_fxnfunction, optional

	Function used to calculate model y-values. 100 x-values are linearly
(if xscale is linear) or logarithmically (if xscale is
log) generated spanning xlim. If xscale is log and a
position=0 violin is specified, the result of model_fxn(0.0) is
illustrated as a horizontal line with the position=0 violin.

	savefigstr, optional

	The name of the file to save the figure to. If None, do not save.

	Other Parameters

	
	xscale{‘linear’, ‘log’}, optional

	Scale of the x-axis.

	yscale{‘logicle’, ‘linear’, ‘log’}, optional

	Scale of the y-axis.

	xlimtuple, optional

	Limits of the x-axis view. If not specified, xlim is calculated to
pad leftmost and rightmost violins with 0.5 * violin_width. If
violin_width is also not specified, violin_width is calculated to
satisfy the 0.5 * violin_width padding and
violin_width_to_span_fraction.

	ylimtuple, optional

	Limits of the y-axis view. If not specified, ylim is calculated to
span all violins (before they are aesthetically trimmed).

	violin_width_to_span_fractionfloat, optional

	Fraction of the x-axis span that a violin should span. Ignored if
violin_width is specified.

	num_binsint, optional

	Number of bins to bin population members. Ignored if bin_edges is
specified.

	bin_edgesarray or list of arrays, optional

	Bin edges used to bin population members for data violins. Bin edges
can be specified for individual violins using a list of arrays of the
same length as data. If not specified, bin_edges is calculated to
span ylim logicly (if yscale is logicle), linearly (if
yscale is linear), or logarithmically (if yscale is log)
using num_bins.

	densitybool, optional

	density parameter passed to the np.histogram() command that bins
population members for each violin. If True, violin width represents
relative frequency density instead of relative frequency (i.e., bins
are normalized by their width).

	upper_trim_fractionfloat or list of floats, optional

	Fraction of members to trim (discard) from the top of the data
violins (e.g., for aesthetic purposes). Upper trim fractions can be
specified for individual violins using a list of floats of the same
length as data.

	lower_trim_fractionfloat or list of floats, optional

	Fraction of members to trim (discard) from the bottom of the data
violins (e.g., for aesthetic purposes). Lower trim fractions can be
specified for individual violins using a list of floats of the same
length as data.

	violin_kwargsdict or list of dicts, optional

	Keyword arguments passed to the plt.fill_betweenx() command that
illustrates the data violins. Keyword arguments can be specified for
individual violins using a list of dicts of the same length as data.
Default = {‘facecolor’:’gray’, ‘edgecolor’:’black’}.

	draw_summary_statbool, optional

	Flag specifying to illustrate a summary statistic for each violin.

	draw_summary_stat_fxnfunction, optional

	Function used to calculate the summary statistic for each violin.
Summary statistics are calculated prior to aesthetic trimming.

	draw_summary_stat_kwargsdict or list of dicts, optional

	Keyword arguments passed to the plt.plot() command that
illustrates the data violin summary statistics. Keyword arguments
can be specified for individual violins using a list of dicts of the
same length as data. Default = {‘color’:’black’}.

	log_zero_tick_labelstr, optional

	Label of position=0 violin tick if xscale is log. Default is
generated by the default log tick formatter
(matplotlib.ticker.LogFormatterSciNotation) with x=0.

	min_bin_edgesarray, optional

	Bin edges used to bin population members for the min violin. If not
specified, min_bin_edges is calculated to span ylim logicaly (if
yscale is logicle), linearly (if yscale is linear), or
logarithmically (if yscale is log) using num_bins.

	min_upper_trim_fractionfloat, optional

	Fraction of members to trim (discard) from the top of the min violin.

	min_lower_trim_fractionfloat, optional

	Fraction of members to trim (discard) from the bottom of the min
violin.

	min_violin_kwargsdict, optional

	Keyword arguments passed to the plt.fill_betweenx() command that
illustrates the min violin. Default = {‘facecolor’:’black’,
‘edgecolor’:’black’}.

	min_draw_summary_stat_kwargsdict, optional

	Keyword arguments passed to the plt.plot() command that
illustrates the min violin summary statistic. Default =
{‘color’:’gray’}.

	draw_min_linebool, optional

	Flag specifying to illustrate a line from the min violin summary
statistic across the plot.

	draw_min_line_kwargsdict, optional

	Keyword arguments passed to the plt.plot() command that
illustrates the min violin line. Default = {‘color’:’gray’,
‘linestyle’:’–’, ‘zorder’:-2}.

	min_tick_labelstr, optional

	Label of min violin tick. Default=’Min’.

	max_bin_edgesarray, optional

	Bin edges used to bin population members for the max violin. If not
specified, max_bin_edges is calculated to span ylim logicaly (if
yscale is logicle), linearly (if yscale is linear), or
logarithmically (if yscale is log) using num_bins.

	max_upper_trim_fractionfloat, optional

	Fraction of members to trim (discard) from the top of the max violin.

	max_lower_trim_fractionfloat, optional

	Fraction of members to trim (discard) from the bottom of the max
violin.

	max_violin_kwargsdict, optional

	Keyword arguments passed to the plt.fill_betweenx() command that
illustrates the max violin. Default = {‘facecolor’:’black’,
‘edgecolor’:’black’}.

	max_draw_summary_stat_kwargsdict, optional

	Keyword arguments passed to the plt.plot() command that
illustrates the max violin summary statistic. Default =
{‘color’:’gray’}.

	draw_max_linebool, optional

	Flag specifying to illustrate a line from the max violin summary
statistic across the plot.

	draw_max_line_kwargsdict, optional

	Keyword arguments passed to the plt.plot() command that
illustrates the max violin line. Default = {‘color’:’gray’,
‘linestyle’:’–’, ‘zorder’:-2}.

	max_tick_labelstr, optional

	Label of max violin tick. Default=’Max’.

	draw_model_kwargsdict, optional

	Keyword arguments passed to the plt.plot() command that
illustrates the model. Default = {‘color’:’gray’, ‘zorder’:-1,
‘solid_capstyle’:’butt’}.

	draw_log_zero_dividerbool, optional

	Flag specifying to illustrate a line separating the position=0 violin
from the data violins if xscale is log.

	draw_log_zero_divider_kwargsdict, optional

	Keyword arguments passed to the plt.axvline() command that
illustrates the position=0 violin divider. Default = {‘color’:’gray’,
‘linestyle’:’:’}.

	draw_minmax_dividerbool, optional

	Flag specifying to illustrate a vertical line separating the min and
max violins from other violins.

	draw_minmax_divider_kwargsdict, optional

	Keyword arguments passed to the plt.axvline() command that
illustrates the min/max divider. Default = {‘color’:’gray’,
‘linestyle’:’-‘}.

	xlabelstr, optional

	Label to use on the x-axis.

	ylabelstr, optional

	Label to use on the y-axis. If None, channel name will be used if
possible (extracted from the last data object).

	titlestr, optional

	Plot title.

FlowCal.stats module

Functions to calculate statistics from the events in a FCSData object.

	
FlowCal.stats.cv(data, channels=None)

	Calculate the Coeff. of Variation of the events in an FCSData object.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint or str or list of int or list of str, optional

	Channels on which to calculate the statistic. If None, use all
channels.

	Returns

	
	float or numpy array

	The Coefficient of Variation of the events in the specified
channels of data.

Notes

The Coefficient of Variation (CV) of a dataset is defined as the
standard deviation divided by the mean of such dataset.

	
FlowCal.stats.gcv(data, channels=None)

	Calculate the geometric CV of the events in an FCSData object.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint or str or list of int or list of str, optional

	Channels on which to calculate the statistic. If None, use all
channels.

	Returns

	
	float or numpy array

	The geometric coefficient of variation of the events in the
specified channels of data.

	
FlowCal.stats.gmean(data, channels=None)

	Calculate the geometric mean of the events in an FCSData object.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint or str or list of int or list of str, optional

	Channels on which to calculate the statistic. If None, use all
channels.

	Returns

	
	float or numpy array

	The geometric mean of the events in the specified channels of
data.

	
FlowCal.stats.gstd(data, channels=None)

	Calculate the geometric std. dev. of the events in an FCSData object.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint or str or list of int or list of str, optional

	Channels on which to calculate the statistic. If None, use all
channels.

	Returns

	
	float or numpy array

	The geometric standard deviation of the events in the specified
channels of data.

	
FlowCal.stats.iqr(data, channels=None)

	Calculate the Interquartile Range of the events in an FCSData object.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint or str or list of int or list of str, optional

	Channels on which to calculate the statistic. If None, use all
channels.

	Returns

	
	float or numpy array

	The Interquartile Range of the events in the specified channels of
data.

Notes

The Interquartile Range (IQR) of a dataset is defined as the interval
between the 25% and the 75% percentiles of such dataset.

	
FlowCal.stats.mean(data, channels=None)

	Calculate the mean of the events in an FCSData object.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint or str or list of int or list of str, optional

	Channels on which to calculate the statistic. If None, use all
channels.

	Returns

	
	float or numpy array

	The mean of the events in the specified channels of data.

	
FlowCal.stats.median(data, channels=None)

	Calculate the median of the events in an FCSData object.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint or str or list of int or list of str, optional

	Channels on which to calculate the statistic. If None, use all
channels.

	Returns

	
	float or numpy array

	The median of the events in the specified channels of data.

	
FlowCal.stats.mode(data, channels=None)

	Calculate the mode of the events in an FCSData object.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint or str or list of int or list of str, optional

	Channels on which to calculate the statistic. If None, use all
channels.

	Returns

	
	float or numpy array

	The mode of the events in the specified channels of data.

	
FlowCal.stats.rcv(data, channels=None)

	Calculate the RCV of the events in an FCSData object.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint or str or list of int or list of str, optional

	Channels on which to calculate the statistic. If None, use all
channels.

	Returns

	
	float or numpy array

	The Robust Coefficient of Variation of the events in the specified
channels of data.

Notes

The Robust Coefficient of Variation (RCV) of a dataset is defined as
the Interquartile Range (IQR) divided by the median of such dataset.

	
FlowCal.stats.std(data, channels=None)

	Calculate the standard deviation of the events in an FCSData object.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint or str or list of int or list of str, optional

	Channels on which to calculate the statistic. If None, use all
channels.

	Returns

	
	float or numpy array

	The standard deviation of the events in the specified channels of
data.

FlowCal.transform module

Functions for transforming flow cytometry data

All transformations are of the following form:

data_t = transform(data, channels, *args, **kwargs):

where data and data_t are NxD FCSData objects or numpy arrays,
representing N events with D channels, channels indicate the channels in
which to apply the transformation, and args and kwargs are
transformation-specific parameters. Each transformation function can apply
its own restrictions or defaults on channels.

If data is an FCSData object, transform should rescale data.range
if necessary.

	
FlowCal.transform.to_mef(data, channels, sc_list, sc_channels=None)

	Transform flow cytometry data using a standard curve function.

This function accepts a list of standard curves (sc_list) and a list
of channels to which those standard curves should be applied
(sc_channels). to_mef automatically checks whether a standard curve
is available for each channel specified in channels, and throws an
error otherwise.

This function is intended to be reduced to the following signature:

to_mef_reduced(data, channels)

by using functools.partial once a list of standard curves and their
respective channels is available.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint, str, list of int, list of str

	Channels on which to perform the transformation. If channels is
None, perform transformation in all channels specified on
sc_channels.

	sc_listlist of functions

	Functions implementing the standard curves for each channel in
sc_channels.

	sc_channelslist of int or list of str, optional

	List of channels corresponding to each function in sc_list. If
None, use all channels in data.

	Returns

	
	FCSData or numpy array

	NxD transformed flow cytometry data.

	Raises

	
	ValueError

	If any channel specified in channels is not in sc_channels.

	
FlowCal.transform.to_rfi(data, channels=None, amplification_type=None, amplifier_gain=None, resolution=None)

	Transform flow cytometry data to Relative Fluorescence Units (RFI).

If amplification_type[0] is different from zero, data has been
taken using a log amplifier. Therefore, to transform to RFI, the
following operation is applied:

y = a[1]*10^(a[0] * (x/r))

Where x and y are the original and transformed data,
respectively; a is amplification_type argument, and r is
resolution. This will transform flow cytometry data taken with a log
amplifier and an ADC of range r to linear RFIs, such
that it covers a[0] decades of signal with a minimum value of
a[1].

If amplification_type[0]==0, however, a linear amplifier has been
used and the following operation is applied instead:

y = x/g

Where g is amplifier_gain. This will transform flow cytometry
data taken with a linear amplifier of gain g back to RFIs.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint, str, list of int, list of str, optional

	Channels on which to perform the transformation. If channels is
None, perform transformation in all channels.

	amplification_typetuple or list of tuple

	The amplification type of the specified channel(s). This should be
reported as a tuple, in which the first element indicates how many
decades the logarithmic amplifier covers, and the second indicates
the linear value that corresponds to a channel value of zero. If
the first element is zero, the amplification type is linear. This
is similar to the $PnE keyword from the FCS standard. If None, take
amplification_type from data.amplification_type(channel).

	amplifier_gainfloat or list of floats, optional

	The linear amplifier gain of the specified channel(s). Only used if
amplification_type[0]==0 (linear amplifier). If None,
take amplifier_gain from data.amplifier_gain(channel). If
data does not contain amplifier_gain(), use 1.0.

	resolutionint, float, or list of int or float, optional

	Maximum range, for each specified channel. Only needed if
amplification_type[0]!=0 (log amplifier). If None, take
resolution from len(data.domain(channel)).

	Returns

	
	FCSData or numpy array

	NxD transformed flow cytometry data.

	
FlowCal.transform.transform(data, channels, transform_fxn, def_channels=None)

	Apply some transformation function to flow cytometry data.

This function is a template transformation function, intended to be
used by other specific transformation functions. It performs basic
checks on channels and data. It then applies transform_fxn to the
specified channels. Finally, it rescales data.range and if
necessary.

	Parameters

	
	dataFCSData or numpy array

	NxD flow cytometry data where N is the number of events and D is
the number of parameters (aka channels).

	channelsint, str, list of int, list of str, optional

	Channels on which to perform the transformation. If channels is
None, use def_channels.

	transform_fxnfunction

	Function that performs the actual transformation.

	def_channelsint, str, list of int, list of str, optional

	Default set of channels in which to perform the transformation.
If def_channels is None, use all channels.

	Returns

	
	data_tFCSData or numpy array

	NxD transformed flow cytometry data.

Contribute

	How to Contribute

	Report Bugs

	Request Features

	FlowCal on Github [https://www.github.com/taborlab/FlowCal]

How to Contribute

If you are interested in contributing to this project, either by writing code, correcting a bug, or adding a new feature, we would love your help! Below we provide some guidelines on how to contribute.

FlowCal Installation for Developers

Regardless of your OS version, we recommend using virtualenv for development. A short primer on virtualenv can be found at http://docs.python-guide.org/en/latest/dev/virtualenvs/.

The recommended way to install FlowCal for development is to run python setup.py develop. This will install FlowCal in a special “developer” mode. In this mode, a link pointing to the FlowCal directory is made in the python installation directory, allowing you to import FlowCal from any python script, while at the same time being able to modify FlowCal’s code and immediately see the resulting effects.

Version Control

FlowCal uses git for version control. We try to follow the git-flow [http://nvie.com/posts/a-successful-git-branching-model/] branching model. Please familiarize yourself with such model before contributing. A quick summary of relevant branches is given below.

	master is only used for final release versions. Do not directly commit to master, ever.

	develop holds unreleased features, which will eventually be released into master.

	Feature branches are branches derived from develop, in which new features are committed. When the feature is completed, a merge request towards develop should be made.

Recommended Workflow

A recommended workflow for contributing to FlowCal is as follows:

	Report your intended change in the issue tracker on github. If reporting a bug, please be as detailed as possible and try to include the necessary steps to reproduce the problem. If suggesting a feature, indicate if you’re willing to write the code for it.

	Assuming that you decided to write code, clone the repo in your computer. You can use the command git clone https://github.com/taborlab/FlowCal if you are using the command-line version of git.

	Switch to the develop branch, using git checkout develop.

	Create a new feature branch, using git checkout -b <feature_name>.

	Set up your virtual environment, if desired.

	Install FlowCal in developer mode, using python setup.py develop.

	Write/test code, commit. Repeat until feature is fully implemented.

	Push and submit a merge request towards develop.

Version Policy

The version number in FlowCal is organized as follows: MAJOR.MINOR.PATCH. The following are guidelines on how to manage version numbers:

	The patch version number should only be increased after fixing a bug or an incompatibility issue, if the public API was not modified at all.

	The minor version number should be increased after a relatively minor API modification. For example:

	After fixing a bug, when a minor API modification was required to do so.

	After making a small adjustment to a function signature, such as adding a new argument or changing the data type of an existing one.

	After adding one or more relatively minor new features (e.g. a new plotting function).

	The major version number should be increased after a fundamental modification to the API and/or the package, or the introduction of a major feature. For example:

	After completely reorganizing the FCSData object or the functions in the package

	After introducing a new Excel UI with a completely reorganized input file format.

	After introducing a Graphical User Interface.

In general, new patch versions should not break a user’s code, whereas minor versions should not require more than minor adjustments. Major versions could either require significant changes in the user’s code or a complete change in the way they think about FlowCal’s API.

Report Bugs

The official way to report a bug is through the issue tracker on github (https://github.com/taborlab/FlowCal/issues). Try to be as explicit as possible when describing your issue. Ideally, a set of instructions to reproduce the error should be provided, together with the version of all the relevant packages you are using.

If you are interested in writing the code necessary to solve a bug, please visit How to Contribute first.

Request Features

The official way to request features is through the issue tracker on github (https://github.com/taborlab/FlowCal/issues). Try to be as descriptive as possible about the desired feature.

If you are interested in writing the code necessary to implement your feature, please visit How to Contribute first.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 FlowCal	

 	
 	
 FlowCal.excel_ui	

 	
 	
 FlowCal.gate	

 	
 	
 FlowCal.io	

 	
 	
 FlowCal.mef	

 	
 	
 FlowCal.plot	

 	
 	
 FlowCal.stats	

 	
 	
 FlowCal.transform	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	acquisition_end_time (FlowCal.io.FCSData attribute)

 	acquisition_start_time (FlowCal.io.FCSData attribute)

 	acquisition_time (FlowCal.io.FCSData attribute)

 	add_beads_stats() (in module FlowCal.excel_ui)

 	
 	add_samples_stats() (in module FlowCal.excel_ui)

 	amplification_type() (FlowCal.io.FCSData method)

 	amplifier_gain() (FlowCal.io.FCSData method)

 	analysis (FlowCal.io.FCSData attribute)

 	(FlowCal.io.FCSFile attribute)

B

 	
 	bin_edges (FlowCal.gate.Density2dGateOutput attribute)

 	
 	bin_mask (FlowCal.gate.Density2dGateOutput attribute)

C

 	
 	channel_labels() (FlowCal.io.FCSData method)

 	channels (FlowCal.io.FCSData attribute)

 	clustering_gmm() (in module FlowCal.mef)

 	
 	contour (FlowCal.gate.Density2dGateOutput attribute)

 	(FlowCal.gate.EllipseGateOutput attribute)

 	cv() (in module FlowCal.stats)

D

 	
 	data (FlowCal.io.FCSFile attribute)

 	data_type (FlowCal.io.FCSData attribute)

 	density2d() (in module FlowCal.gate)

 	(in module FlowCal.plot)

 	
 	Density2dGateOutput (class in FlowCal.gate)

 	density_and_hist() (in module FlowCal.plot)

 	detector_voltage() (FlowCal.io.FCSData method)

E

 	
 	ellipse() (in module FlowCal.gate)

 	
 	EllipseGateOutput (class in FlowCal.gate)

 	ExcelUIException

F

 	
 	FCSData (class in FlowCal.io)

 	FCSFile (class in FlowCal.io)

 	fit_beads_autofluorescence() (in module FlowCal.mef)

 	FlowCal.excel_ui (module)

 	FlowCal.gate (module)

 	
 	FlowCal.io (module)

 	FlowCal.mef (module)

 	FlowCal.plot (module)

 	FlowCal.stats (module)

 	FlowCal.transform (module)

G

 	
 	gated_data (FlowCal.gate.Density2dGateOutput attribute)

 	(FlowCal.gate.EllipseGateOutput attribute)

 	(FlowCal.gate.HighLowGateOutput attribute)

 	(FlowCal.gate.StartEndGateOutput attribute)

 	gcv() (in module FlowCal.stats)

 	
 	generate_about_table() (in module FlowCal.excel_ui)

 	generate_histograms_table() (in module FlowCal.excel_ui)

 	get_transform_fxn() (in module FlowCal.mef)

 	gmean() (in module FlowCal.stats)

 	gstd() (in module FlowCal.stats)

H

 	
 	header (FlowCal.io.FCSFile attribute)

 	high_low() (in module FlowCal.gate)

 	
 	HighLowGateOutput (class in FlowCal.gate)

 	hist1d() (in module FlowCal.plot)

 	hist_bins() (FlowCal.io.FCSData method)

I

 	
 	infile (FlowCal.io.FCSData attribute)

 	(FlowCal.io.FCSFile attribute)

 	
 	iqr() (in module FlowCal.stats)

M

 	
 	mask (FlowCal.gate.Density2dGateOutput attribute)

 	(FlowCal.gate.EllipseGateOutput attribute)

 	(FlowCal.gate.HighLowGateOutput attribute)

 	(FlowCal.gate.StartEndGateOutput attribute)

 	
 	mean() (in module FlowCal.stats)

 	median() (in module FlowCal.stats)

 	mode() (in module FlowCal.stats)

P

 	
 	plot_standard_curve() (in module FlowCal.mef)

 	
 	process_beads_table() (in module FlowCal.excel_ui)

 	process_samples_table() (in module FlowCal.excel_ui)

R

 	
 	range() (FlowCal.io.FCSData method)

 	rcv() (in module FlowCal.stats)

 	read_fcs_data_segment() (in module FlowCal.io)

 	read_fcs_header_segment() (in module FlowCal.io)

 	
 	read_fcs_text_segment() (in module FlowCal.io)

 	read_table() (in module FlowCal.excel_ui)

 	resolution() (FlowCal.io.FCSData method)

 	run() (in module FlowCal.excel_ui)

 	run_command_line() (in module FlowCal.excel_ui)

S

 	
 	scatter2d() (in module FlowCal.plot)

 	scatter3d() (in module FlowCal.plot)

 	scatter3d_and_projections() (in module FlowCal.plot)

 	selection_std() (in module FlowCal.mef)

 	
 	show_open_file_dialog() (in module FlowCal.excel_ui)

 	start_end() (in module FlowCal.gate)

 	StartEndGateOutput (class in FlowCal.gate)

 	std() (in module FlowCal.stats)

T

 	
 	text (FlowCal.io.FCSData attribute)

 	(FlowCal.io.FCSFile attribute)

 	time_step (FlowCal.io.FCSData attribute)

 	
 	to_mef() (in module FlowCal.transform)

 	to_rfi() (in module FlowCal.transform)

 	transform() (in module FlowCal.transform)

V

 	
 	violin() (in module FlowCal.plot)

 	
 	violin_dose_response() (in module FlowCal.plot)

W

 	
 	write_workbook() (in module FlowCal.excel_ui)

 _static/img/python_tutorial/python_tutorial_plot_violin_2.png
E] E]

('ne) @d2uadsaI0n|4 T4

10°

100

102

10!

DAPG Concentration (uM)

Max

Min

_static/img/python_tutorial/python_tutorial_transform_1.png
1400 A

1200 A

1000 A

800

600

400 -

200 A

100

200

300

400

500

600

700

800

_static/img/python_tutorial/python_tutorial_plot_hist1d_3.png
Counts

1400 A

1200 A

1000 A

800

600

400 -

[FCFiles/sample009.fcs
[FCFiles/sample010.fcs
I FCFiles/sample011.fcs

10t

102 103
FL1

_static/img/python_tutorial/python_tutorial_plot_violin_1.png
FL1

10°

102

10!

100

10!
DAPG (uM)

102

_images/installation_completed.png
sing c:\users\sexto\.conda\envs\py3_anaconda2e26.67_floucalvi.
1.1

earching for PyWavelets
Best match: PyWavelets 1.1.1
Adding PyWavelets 1.1.1 to easy-install.pth file

sing c:\users\sexto\.conda\envs\py3_anaconda2026.67_floucalvi.

earching for cycle
Best match: cycler 6.10.6
Adding cycler ©.10.0 to easy-install.pth file

sing c:\users\sexto\.conda\envs\py3_anaconda2e26.67_flowcalvi.

earching for kiwisolver=-1.2.6
Best match: kiwisolver 1.2.6
Adding kiwisolver 1.2.6 to easy-install.pth file

sing c:\users\sexto). conda\envs\py3_anaconds2020.67_flawcalvi.
.47

earching for pyparsin
Best match: pyparsing 2. P
Adding pyparsing 2.4.7 to easy-install.pth file

sing c:\users\sexto\.conda\envs\py3_anaconda2026.67_floucalvi.
earching for decorator=-4.4.2
Best match: decorator 4.4.2

Adding decorator 4.4.2 to easy-install.pth file

sing c:\users\sexto\.conda\envs\py3_anaconda2e26.67_floucalvi.

Finished processing dependencies for FlouCal--1.3.6

3.0\1lib\site-packages

3.0\1lib\site-packages

3.0\1lib\site-packages

3.0\1lib\site-packages

3.0\1lib\site-packages

3.0\1lib\site-packages

(py3_anaconda2626.67_FlouCalv1.3.6) C:\Users\sexto\Downloads\Floucal>

_images/output_beads_clustering.png
FL3

103'E

102 3

10t 3

10t

FL1

_images/input_instruments.png
experiment.xisx £ ohnseton TH @
Home Inset Draw Pagelayout Formulas Data Review View Help 8 Share 3 Comments
£ | D
| c o 3 | F | s

|
I Forward scatter Channel e Scatter Channel _ Fluorescence Channels Time Channel
> [FCO01 Moake's Flow Cytometer FSC ssc FLL FL2, FL3 TIvE

Instruments | Beads | Samples | @ 30 K

& Display Settings | Bl

_static/img/python_tutorial/python_tutorial_transform_2.png
2000 ~

1750 A

1500 A

1250 A

1000 A

750 4

500 4

2501

10°

10t

102

103

104

_images/input_samples.png
Home Inset Draw Pagelayout Formulas

£ | D

B < D

experiment.xist -

Data

3

Review

)

View Help

F

G

JohnSexton ©% &

1% Share

H

© Comments

linstrument D Beads D File Path
/FCFiles/sample0gs.fcs
/FCFiles/sample007.fcs
/FCFiles/sample00s. fcs
/FCFiles/sample00s. fcs
/FCFiles/sample01o.fcs
/FCFiles/sample01.fcs
/FCFiles/sample0i2.fes
/FCFiles/sample01.fes
/FCFiles/sample01a.fcs
/FCFiles/sample0is.fcs

FLLUnits Gate Fraction _Strain

MEF
MEF
MEF
MEF
MEF
MEF
MEF
MEF
MEF
MEF

JFCFiles/min/sample00a.fes | MEF
/FCFiles/max/sample00s.fcs MEF

0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51007
0.85 5I51012

Plasmids
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0143, pJS0130, pSC31_3
pIS0143, pJS0304, pSC31_3

DAPG (uM)
[

2332362
4.363809
2163265
15.27207
2857143
53.45225
100
187.0829

Instruments | Beads | Samples @

@ Display Settings

<

iz2)

_images/output_beads_sc.png
FL1 (MEF)

108

10°

10*

102

10°

® Beads
—— Beads model
—— Standard curve

10°

10! 102 103
FL1 (a.u.)

_images/output_sample.png
S0001 (82.8% retained)

0 10! 102 103
FsC

[Ungated

800 A B Gated

600 ~

Counts

400 A

200 A

0 102 103 104 10°
FL1 (Molecules of Equivalent Fluorophore, MEF)

_images/output_beads_density.png
B0O0O01 (84.0% retained)

103 7
O
V5]
(V]
102 7 -
102 103
FSC
2500 A [Ungated
I Gated
2000 A
(V)]
‘€ 1500 A
>
o
(@]
1000 A
500 A
0 T
0 10t 102 103
FL1
8000 A [Ungated
3 Gated
6000 A
(V)]
=
3 4000 -
(@]
2000 A
0 mE LLLLL
0 10t 102 103

_images/output_beads_populations.png
Counts

2000 A

1500 A

1000 ~

500 ~

10t

FL1

102

_images/output_spreadsheet_about.png
experiment outputlsk ~ £ ohnseton TH @
Home Inset Draw Pagelayout Formulas Data Review View Help 8 Share 3 Comments
£ || Keyword

<

Keyword | value

FlowCal version 1.3.0

Date of analysis 2021/01/20
Time of analysis 03:55:44PM

5 |Input file path experiment.xlsx

ENEN

4]
s
6]
7]
8]
B

=

.| Beads | Samples | Histograms | AboutAnalysis | @ t [

@ Display Settings

_images/output_spreadsheet_beads.png
Home Insert Draw Page Layout

£ | D

experiment outputis - £ ohnSexon

Formuls Data Review View Help

J I M

=

1% Share &3 Comments

N

|
of Events| Acq

ion Time (s) | FL1 Beads Model

|
FL1 Beads Params. Name]|

27731
27754
27857

78.3 m*log(fl_rfi) + b = log(fl_mef_auto +l_mef)
63.6 mlog(fl_ri) + b = log(fl_mef_auto +fl_mef)
6.7 mlog(fl_ri) + b = log(fl_mef_auto +fl_mef)

m, b, fi_mef_auto
m, b, fi_mef_auto
m, b, fi_mef_auto

Instruments | Beads | samples

Histograms | AboutAna .. ® i [«

& Display Settings | Bl

_static/img/python_tutorial/python_tutorial_plot_hist1d_1.png
800
600

s3uno)

400 -
200 A

103

102

10t

FL1

_static/img/python_tutorial/python_tutorial_plot_hist1d_2.png
102
FL1

10t

10°

_static/img/python_tutorial/python_tutorial_plot_density_2d_2.png
SsC

103 4

102 4

101 4

10t

FSC

102

103

_static/img/python_tutorial/python_tutorial_plot_density_and_hist_1.png
sample006.fcs

103 4

102 4

SsC

10! 4

10t 102 10°
FSC

800 ~

600

Counts

400 -

200 4

10! 102 10°
FL1

_images/output_spreadsheet_histograms.png
experiment outputise - £ lommSeton G @

Home Insert Draw Pagelayout Formulas Data Review View Help 18 Share 3 Comments

£ | sampleid

5 c o 3 s

'sample ID|channel] |Bin1] Bin2 Bin4

50001 FLL Bin Centers (MEF) o 0126426475 0379331308

so001 FL1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts

Instruments samples About Ana

@ Display Settings

nav.xhtml

 Table of Contents

 		
 FlowCal

 		
 Getting Started

 		
 Installing FlowCal with Anaconda

 		
 Installing FlowCal in an Existing Python Evironment

 		
 Fundamentals

 		
 Calibration

 		
 Introduction to Calibration and MEF

 		
 The Process of MEF Calibration

 		
 Density Gating

 		
 Description

 		
 Algorithm

 		
 FlowCal’s Excel UI

 		
 How to use FlowCal’s Excel UI

 		
 Format of the Input Excel File

 		
 Instruments sheet

 		
 Beads sheet

 		
 Samples sheet

 		
 Analysis Performed by the Excel UI

 		
 Processing of Calibration Beads

 		
 Processing of Cell Samples

 		
 Outputs of the Excel UI

 		
 Plots

 		
 Output Excel File

 		
 Command Line Interface (Advanced)

 		
 FlowCal’s Python API Tutorial

 		
 Reading Flow Cytometry Data

 		
 Transforming Flow Cytometry Data

 		
 Transforming to Arbitrary Fluorescence Units (a.u.)

 		
 Transforming to Molecules of Equivalent Fluorophore (MEF)

 		
 Plotting Flow Cytometry Data

 		
 Histograms

 		
 Density Plots

 		
 Combined Histogram and Density Plots

 		
 Violin Plots

 		
 Other Plotting Functions

 		
 Gating Flow Cytometry Data

 		
 Removing Saturated Events

 		
 Ellipse Gate

 		
 Density Gate

 		
 Plotting 2D Gates

 		
 Calibrating Flow Cytometry Data to MEF

 		
 Working with Calibration Beads

 		
 MEF Transformation in FlowCal

 		
 Generation of a MEF Transformation Function

 		
 Processing FCS Files with the Excel UI

 		
 Introduction

 		
 Processing Samples with the Excel UI

 		
 FlowCal (Python API) Reference

 		
 FlowCal.excel_ui module

 		
 FlowCal.gate module

 		
 FlowCal.io module

 		
 FlowCal.mef module

 		
 FlowCal.plot module

 		
 FlowCal.stats module

 		
 FlowCal.transform module

 		
 Contribute

 		
 How to Contribute

 		
 FlowCal Installation for Developers

 		
 Version Control

 		
 Recommended Workflow

 		
 Version Policy

 		
 Report Bugs

 		
 Request Features

_images/python_tutorial_gate_density_2.png
sample006.fcs (75.0% retained)

103 4
o 10?4
n
w0
101 4
0 T T T
0 10! 102 103
FSC
=3 Ungated
800 - I Gated
@ 600 -
c
3
O 400 A
200 -
0+ T
10! 102 103

FL1

_images/python_tutorial_gate_ellipse_1.png
SsC

103 4

102 4

101 4

10t

FSC

102

103

_images/output_spreadsheet_samples.png
experiment outputdsx ~ £ sohnSeton 7F @

Home Insert Draw Pagelayout Formulas Data Review View Help 18 Share 3 Comments

E

o K | L | M | N

File Path i of Events| AcquisitionTime (s) | FL1Detector Volt. |FL1Amp. Type
'S0001/FCFiles/sample006.fcs . 850 Log
150002 ./FCFiles/sample007.fcs 2 850 Log
150003 ./FCFiles/sample00s.fcs . 850 Log
150004 ./FCFiles/sample00s.fes % 850 Log
150005 ./FCFiles/sample010.fes . 850 Log
150006 ./FCFiles/sample011.fcs . 850 Log
150007 ./FCFiles/sample0i2.fes : 850 Log
150008 ./FCFiles/sample013.fes . 850 Log
150009 ./FCFiles/sample0i4.fes . 850 Log
'50010./FCFiles/sample01s.fes . 850 Log
min /FCFiles/min/sample0od.fes % 850 Log
3 |max ./FCFiles/max/sample008.fcs . 750 Log

Instruments | Beads | Samples | Histograms | AboutAna ... (&) «

& Display Settings | Bl

_images/python_tutorial_gate_density_1.png
SsC

103 4

102 4

101 4

10t

FSC

102

103

_images/python_tutorial_mef_1.png
10° sample001.fcs (30.3% retained)

SsC

102 103

FSC

=3 Ungated
I Gated

2500 ~

2000 1

1500 A

Counts

1000 ~

500 -

0 10! 102 103
FL1

_images/python_tutorial_mef_2.png
Counts

500 4

400 -

300 A

200 A

100 4

102 103
FL1

104

10°

_images/python_tutorial_gate_high_low_1.png
SsC

103 4

102 4

101 4

10t

FSC

102

103

_images/python_tutorial_gate_high_low_2.png
SsC

103 4

102 4

101 4

10t

FSC

102

103

_images/python_tutorial_mef_3.png
102

800

600

400 -

s3uno)

200 A

FL1

_images/python_tutorial_mef_4.png
FL3

103 4

102 4

10! 4

10t

FL1

103

_images/python_tutorial_mef_5.png
103

il

800

600

400 -

s3uno)

200 A

FL1

_images/python_tutorial_plot_density_2d_2.png
SsC

103 4

102 4

101 4

10t

FSC

102

103

_images/python_tutorial_plot_density_and_hist_1.png
sample006.fcs

103 4

102 4

SsC

10! 4

10t 102 10°
FSC

800 ~

600

Counts

400 -

200 4

10! 102 10°
FL1

_images/python_tutorial_mef_6.png
FL1 (MEF)

108

10°

104

102

10°

® Beads
—— Beads model
—— Standard curve

10°

10! 10? 10°
FL1 (a.u.)

_images/python_tutorial_plot_density_2d_1.png

_images/python_tutorial_plot_hist1d_3.png
Counts

1400 A

1200 A

1000 A

800

600

400 -

[FCFiles/sample009.fcs
[FCFiles/sample010.fcs
I FCFiles/sample011.fcs

10t

102 103
FL1

_images/python_tutorial_plot_violin_1.png
FL1

10°

102

10!

100

10!
DAPG (uM)

102

_images/python_tutorial_plot_hist1d_1.png
800
600

s3uno)

400 -
200 A

103

102

10t

FL1

_images/python_tutorial_plot_hist1d_2.png
102
FL1

10t

10°

_images/python_tutorial_transform_1.png
1400 A

1200 A

1000 A

800

600

400 -

200 A

100

200

300

400

500

600

700

800

_images/python_tutorial_transform_2.png
2000 ~

1750 A

1500 A

1250 A

1000 A

750 4

500 4

2501

10°

10t

102

103

104

_images/python_tutorial_plot_violin_2.png
E] E]

('ne) @d2uadsaI0n|4 T4

10°

100

102

10!

DAPG Concentration (uM)

Max

Min

_static/comment-bright.png

_static/FlowCal_logo.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

_static/up.png

_static/img/excel_ui/input_beads.png
Home

Insert Draw Page Layout

£ | D

B <

Formulas

D

experimentais - £ ohnSexon

Data Review View Help

1% Share &3 Comments

F | G

W -

4]
5]
6]
7]
8]
2]

|
ID__Jinstrument D _File Path

BO00L FCO01
BMIN FCO0L
BMAX FCO01

/FCFiles/sample00L.fcs
/FCFiles/min/sample00l.fcs

Beads Lot
As01
AK02

/FCFiles/max/sample0o2.fes AJOL

FLLMEF Values

0,792, 2079, 6588, 16471, 4747, 137043, 271647
0,771, 2106, 6262, 15183, 45292, 136258, 291042
0,792, 2079, 6588, 16471, 4747, 137043, 271647

Gate Fraction Clustering C
0.85 FL1, 13
0.85 FL1, 13
0.85 FL1, 13

Instruments | Beads | Samples |

®

@ Display Settings

_images/fundamentals_calibration_5.png
FITC-A (MEF)

108

10°

10*

102

10°

® Beads

—— Beads model

—— Standard curve
10° 10! 10? 103 10* 10°

FITC-A (a.u.)

_images/fundamentals_density_1.png
SSC

10°

Counts

10! 5

FCFiles/data_001.fcs (50.0% retained)

10° 10t 102 103
FSC
[Ungated
B Gated
102 103

10°

10t

FL1

_images/fundamentals_calibration_3.png
APC-A

10° 3

10* 3

103
FITC-A

10*

10°

_images/fundamentals_calibration_4.png
—102

0

102

|

103

FITC-A

104 10°

_images/input_beads.png
Home

Insert Draw Page Layout

£ | D

B <

Formulas

D

experimentais - £ ohnSexon

Data Review View Help

1% Share &3 Comments

F | G

W -

4]
5]
6]
7]
8]
2]

|
ID__Jinstrument D _File Path

BO00L FCO01
BMIN FCO0L
BMAX FCO01

/FCFiles/sample00L.fcs
/FCFiles/min/sample00l.fcs

Beads Lot
As01
AK02

/FCFiles/max/sample0o2.fes AJOL

FLLMEF Values

0,792, 2079, 6588, 16471, 4747, 137043, 271647
0,771, 2106, 6262, 15183, 45292, 136258, 291042
0,792, 2079, 6588, 16471, 4747, 137043, 271647

Gate Fraction Clustering C
0.85 FL1, 13
0.85 FL1, 13
0.85 FL1, 13

Instruments | Beads | Samples |

®

@ Display Settings

_static/img/excel_ui/output_beads_density.png
B0O0O01 (84.0% retained)

103 7
O
V5]
(V]
102 7 -
102 103
FSC
2500 A [Ungated
I Gated
2000 A
(V)]
‘€ 1500 A
>
o
(@]
1000 A
500 A
0 T
0 10t 102 103
FL1
8000 A [Ungated
3 Gated
6000 A
(V)]
=
3 4000 -
(@]
2000 A
0 mE LLLLL
0 10t 102 103

_static/img/excel_ui/output_beads_populations.png
Counts

2000 A

1500 A

1000 ~

500 ~

10t

FL1

102

_static/img/excel_ui/input_samples.png
Home Inset Draw Pagelayout Formulas

£ | D

B < D

experiment.xist -

Data

3

Review

)

View Help

F

G

JohnSexton ©% &

1% Share

H

© Comments

linstrument D Beads D File Path
/FCFiles/sample0gs.fcs
/FCFiles/sample007.fcs
/FCFiles/sample00s. fcs
/FCFiles/sample00s. fcs
/FCFiles/sample01o.fcs
/FCFiles/sample01.fcs
/FCFiles/sample0i2.fes
/FCFiles/sample01.fes
/FCFiles/sample01a.fcs
/FCFiles/sample0is.fcs

FLLUnits Gate Fraction _Strain

MEF
MEF
MEF
MEF
MEF
MEF
MEF
MEF
MEF
MEF

JFCFiles/min/sample00a.fes | MEF
/FCFiles/max/sample00s.fcs MEF

0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51123
0.85 5I51007
0.85 5I51012

Plasmids
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0355, pJS0304, pSC31_3
pIS0143, pJS0130, pSC31_3
pIS0143, pJS0304, pSC31_3

DAPG (uM)
[

2332362
4.363809
2163265
15.27207
2857143
53.45225
100
187.0829

Instruments | Beads | Samples @

@ Display Settings

<

iz2)

_static/img/excel_ui/output_beads_clustering.png
FL3

103'E

102 3

10t 3

10t

FL1

_images/fundamentals_calibration_1.png
Beads Tube 001.fcs

10° A

SSC-A

104 T
104 10°
FSC-A

-102 0 102 103 104
FITC-A

_static/img/excel_ui/output_spreadsheet_about.png
experiment outputlsk ~ £ ohnseton TH @
Home Inset Draw Pagelayout Formulas Data Review View Help 8 Share 3 Comments
£ || Keyword

<

Keyword | value

FlowCal version 1.3.0

Date of analysis 2021/01/20
Time of analysis 03:55:44PM

5 |Input file path experiment.xlsx

ENEN

4]
s
6]
7]
8]
B

=

.| Beads | Samples | Histograms | AboutAnalysis | @ t [

@ Display Settings

_images/fundamentals_calibration_2.png
Beads_Tube_001.fcs (48.8% retained)

10° A
<
@)
]
(V]
10* T
10* 10°
FSC-A
[Ungated
800 B Gated
10* 10°

FITC-A

_static/img/excel_ui/output_spreadsheet_beads.png
Home Insert Draw Page Layout

£ | D

experiment outputis - £ ohnSexon

Formuls Data Review View Help

J I M

=

1% Share &3 Comments

N

|
of Events| Acq

ion Time (s) | FL1 Beads Model

|
FL1 Beads Params. Name]|

27731
27754
27857

78.3 m*log(fl_rfi) + b = log(fl_mef_auto +l_mef)
63.6 mlog(fl_ri) + b = log(fl_mef_auto +fl_mef)
6.7 mlog(fl_ri) + b = log(fl_mef_auto +fl_mef)

m, b, fi_mef_auto
m, b, fi_mef_auto
m, b, fi_mef_auto

Instruments | Beads | samples

Histograms | AboutAna .. ® i [«

& Display Settings | Bl

_static/img/excel_ui/output_beads_sc.png
FL1 (MEF)

108

10°

10*

102

10°

® Beads
—— Beads model
—— Standard curve

10°

10! 102 103
FL1 (a.u.)

_static/img/excel_ui/output_sample.png
S0001 (82.8% retained)

0 10! 102 103
FsC

[Ungated

800 A B Gated

600 ~

Counts

400 A

200 A

0 102 103 104 10°
FL1 (Molecules of Equivalent Fluorophore, MEF)

_static/img/excel_ui/output_spreadsheet_histograms.png
experiment outputise - £ lommSeton G @

Home Insert Draw Pagelayout Formulas Data Review View Help 18 Share 3 Comments

£ | sampleid

5 c o 3 s

'sample ID|channel] |Bin1] Bin2 Bin4

50001 FLL Bin Centers (MEF) o 0126426475 0379331308

so001 FL1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts o o
FLL Bin Centers (MEF) 0126426475 0379331308
F1 Counts

Instruments samples About Ana

@ Display Settings

_static/img/excel_ui/input_instruments.png
experiment.xisx £ ohnseton TH @
Home Inset Draw Pagelayout Formulas Data Review View Help 8 Share 3 Comments
£ | D
| c o 3 | F | s

|
I Forward scatter Channel e Scatter Channel _ Fluorescence Channels Time Channel
> [FCO01 Moake's Flow Cytometer FSC ssc FLL FL2, FL3 TIvE

Instruments | Beads | Samples | @ 30 K

& Display Settings | Bl

_static/img/fundamentals/fundamentals_calibration_4.png
—102

0

102

|

103

FITC-A

104 10°

_static/img/fundamentals/fundamentals_calibration_5.png
FITC-A (MEF)

108

10°

10*

102

10°

® Beads

—— Beads model

—— Standard curve
10° 10! 10? 103 10* 10°

FITC-A (a.u.)

_static/img/fundamentals/fundamentals_calibration_2.png
Beads_Tube_001.fcs (48.8% retained)

10° A
<
@)
]
(V]
10* T
10* 10°
FSC-A
[Ungated
800 B Gated
10* 10°

FITC-A

_static/img/fundamentals/fundamentals_calibration_3.png
APC-A

10° 3

10* 3

103
FITC-A

10*

10°

_static/img/python_tutorial/python_tutorial_gate_density_1.png
SsC

103 4

102 4

101 4

10t

FSC

102

103

_static/img/python_tutorial/python_tutorial_gate_density_2.png
sample006.fcs (75.0% retained)

103 4
o 10?4
n
w0
101 4
0 T T T
0 10! 102 103
FSC
=3 Ungated
800 - I Gated
@ 600 -
c
3
O 400 A
200 -
0+ T
10! 102 103

FL1

_static/img/fundamentals/fundamentals_density_1.png
SSC

10°

Counts

10! 5

FCFiles/data_001.fcs (50.0% retained)

10° 10t 102 103
FSC
[Ungated
B Gated
102 103

10°

10t

FL1

_static/img/getting_started/installation_completed.png
sing c:\users\sexto\.conda\envs\py3_anaconda2e26.67_floucalvi.
1.1

earching for PyWavelets
Best match: PyWavelets 1.1.1
Adding PyWavelets 1.1.1 to easy-install.pth file

sing c:\users\sexto\.conda\envs\py3_anaconda2026.67_floucalvi.

earching for cycle
Best match: cycler 6.10.6
Adding cycler ©.10.0 to easy-install.pth file

sing c:\users\sexto\.conda\envs\py3_anaconda2e26.67_flowcalvi.

earching for kiwisolver=-1.2.6
Best match: kiwisolver 1.2.6
Adding kiwisolver 1.2.6 to easy-install.pth file

sing c:\users\sexto). conda\envs\py3_anaconds2020.67_flawcalvi.
.47

earching for pyparsin
Best match: pyparsing 2. P
Adding pyparsing 2.4.7 to easy-install.pth file

sing c:\users\sexto\.conda\envs\py3_anaconda2026.67_floucalvi.
earching for decorator=-4.4.2
Best match: decorator 4.4.2

Adding decorator 4.4.2 to easy-install.pth file

sing c:\users\sexto\.conda\envs\py3_anaconda2e26.67_floucalvi.

Finished processing dependencies for FlouCal--1.3.6

3.0\1lib\site-packages

3.0\1lib\site-packages

3.0\1lib\site-packages

3.0\1lib\site-packages

3.0\1lib\site-packages

3.0\1lib\site-packages

(py3_anaconda2626.67_FlouCalv1.3.6) C:\Users\sexto\Downloads\Floucal>

_static/img/excel_ui/output_spreadsheet_samples.png
experiment outputdsx ~ £ sohnSeton 7F @

Home Insert Draw Pagelayout Formulas Data Review View Help 18 Share 3 Comments

E

o K | L | M | N

File Path i of Events| AcquisitionTime (s) | FL1Detector Volt. |FL1Amp. Type
'S0001/FCFiles/sample006.fcs . 850 Log
150002 ./FCFiles/sample007.fcs 2 850 Log
150003 ./FCFiles/sample00s.fcs . 850 Log
150004 ./FCFiles/sample00s.fes % 850 Log
150005 ./FCFiles/sample010.fes . 850 Log
150006 ./FCFiles/sample011.fcs . 850 Log
150007 ./FCFiles/sample0i2.fes : 850 Log
150008 ./FCFiles/sample013.fes . 850 Log
150009 ./FCFiles/sample0i4.fes . 850 Log
'50010./FCFiles/sample01s.fes . 850 Log
min /FCFiles/min/sample0od.fes % 850 Log
3 |max ./FCFiles/max/sample008.fcs . 750 Log

Instruments | Beads | Samples | Histograms | AboutAna ... (&) «

& Display Settings | Bl

_static/img/fundamentals/fundamentals_calibration_1.png
Beads Tube 001.fcs

10° A

SSC-A

104 T
104 10°
FSC-A

-102 0 102 103 104
FITC-A

_static/img/python_tutorial/python_tutorial_mef_3.png
102

800

600

400 -

s3uno)

200 A

FL1

_static/img/python_tutorial/python_tutorial_mef_4.png
FL3

103 4

102 4

10! 4

10t

FL1

103

_static/img/python_tutorial/python_tutorial_mef_1.png
10° sample001.fcs (30.3% retained)

SsC

102 103

FSC

=3 Ungated
I Gated

2500 ~

2000 1

1500 A

Counts

1000 ~

500 -

0 10! 102 103
FL1

_static/img/python_tutorial/python_tutorial_mef_2.png
Counts

500 4

400 -

300 A

200 A

100 4

102 103
FL1

104

10°

_static/img/python_tutorial/python_tutorial_plot_density_2d_1.png

_static/img/python_tutorial/python_tutorial_mef_5.png
103

il

800

600

400 -

s3uno)

200 A

FL1

_static/img/python_tutorial/python_tutorial_mef_6.png
FL1 (MEF)

108

10°

104

102

10°

® Beads
—— Beads model
—— Standard curve

10°

10! 10? 10°
FL1 (a.u.)

_static/img/python_tutorial/python_tutorial_gate_high_low_1.png
SsC

103 4

102 4

101 4

10t

FSC

102

103

_static/img/python_tutorial/python_tutorial_gate_high_low_2.png
SsC

103 4

102 4

101 4

10t

FSC

102

103

_static/img/python_tutorial/python_tutorial_gate_ellipse_1.png
SsC

103 4

102 4

101 4

10t

FSC

102

103

